4. TUBAF

Die Ressourcenuniversitdt.

“Ppipge® Seit1765.

Research Article

Algorithmische Dominanz vs. Gelerntes
Verhalten: Ein Vergleich von A*, Heuristik
und PPO in BouncAl

Evaluation klassischer Suchverfahren und moderner Reinforcement
Learning Ansétze in einer stochastischen Umgebung

Simon Hobrtzsch

13. Januar 2026
TU Bergakademie Freiberg

Zusammenfassung

Die Steuerung autonomer Agenten in dynamischen Echtzeit-Umgebungen
stellt eine klassische Herausforderung der Kunstlichen Intelligenz dar.
Wahrend modellbasierte Suchalgorithmen wie A* theoretisch optimale
Lésungen liefern, skalieren sie oft schlecht mit der Komplexitdt des
Zustandsraums und hangen massiv von der Prazision eines Weltmodells
ab. Reinforcement Learning (RL) verspricht als datengetriebener Ansatz,
komplexe Handlungsstrategien allein durch Interaktion zu erlernen, kdmpft
jedoch haufig mit Instabilitdt und hoher Varianz im Lernprozess.

Diese Arbeit prasentiert eine umfassende Vergleichsstudie vierer
unterschiedlicher Agenten-Architekturen in der vertikalen ,Infinite Scroller®-
Umgebung BouncAl: einen reaktiven Reflex-Agenten, einen heuristischen
Utility-Agenten, einen modellbasierten A*-Agenten und einen mittels
Proximal Policy Optimization (PPO) trainierten RL-Agenten. Um den
Trainingserfolg des PPO-Modells in dieser hochgradig stochastischen
Umgebung zu gewahrleisten, wurde ein Curriculum Learning Ansatz
implementiert, der die Schwierigkeit der Spielphysik stufenweise steigert.

Die Evaluation auf Basis von N = 10.000 Simulationslaufen pro Agent zeigt,
dass der A*-Agent mit einem durchschnittlichen Score von 19.030 Punkten
die héchste Performance erzielt, sofern ein fehlerfreies Vorhersagemodell

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl

1 Einleitung

existiert. Das trainierte PPO-Modell erreicht 14.283 Punkte und nahert sich
damit auf 95,6 % der Leistung des handoptimierten Utility-Agenten an. Ein
zentrales Ergebnis der Studie ist die strategische Robustheit des PPO-
Agenten: Mit der geringsten Standardabweichung aller Probanden (o = 3.435)
demonstriert er ein hochgradig konsistentes Verhalten, das unabhangig von
Umgebungsfluktuationen verlassliche Mindestperformances garantiert. Die
Ergebnisse belegen, dass moderne RL-Verfahren nicht nur mit spezialisierten
Heuristiken konkurrieren kénnen, sondern diesen in puncto Verhaltensstabili-
tat oft Uberlegen sind.

1 Einleitung

Die Entwicklung kunstlicher Intelligenz fur Videospiele dient seit Jahrzehnten als wich-
tiges Testfeld fur Algorithmen, die Entscheidungen unter Unsicherheit, physikalischen
Beschrankungen und striktem Zeitdruck treffen missen. Spiele fungieren hierbei als
kontrollierte Laborumgebungen fir Probleme, die in ihrer Kernstruktur — wie etwa die
Pfadplanung oder das Ausweichen von Hindernissen — direkt auf reale Anwendungen
in der Robotik oder autonomen Systemen Ubertragbar sind.

Das in dieser Arbeit verwendete Spiel BouncAl stellt einen vertikalen Scroller dar, in
dem ein Agent durch gezielte Spriinge auf Plattformen an Héhe gewinnen muss. Diese
Umgebung ist durch eine hybride Komplexitat charakterisiert: Wahrend die Flugbahn
des Spielers einer streng deterministischen Parabel folgt, fihren bewegliche Plattformen,
Windkréafte und stochastisch erscheinende Gegner zu einem dynamisch fluktuierenden
Zustandsraum. Ein erfolgreicher Agent muss daher nicht nur reaktiv handeln, sondern
die Spielphysik antizipieren und langfristige Trajektorien planen.

Traditionell wurden solche Aufgaben durch spezialisierte Suchalgorithmen (z.B. A*) ge-
I6st, die den mathematisch optimalen Pfad durch den Zustandsraum berechnen. Solche
Ansatze erfordern jedoch ein exaktes ,Forward Model” der Welt und sind rechenintensiv.
Heuristische Verfahren hingegen bieten zwar Effizienz, leiden jedoch unter der Notwen-
digkeit einer manuellen Regeldefinition (,Hardcoding®), die haufig unflexibel gegentber
unvorhergesehenen Situationen ist. Mit dem Aufstieg des Deep Reinforcement Learnings
(RL) hat sich ein Paradigma etabliert, bei dem Agenten Strategien durch Versuch und
Irrtum (Trial-and-Error) selbststandig entwickeln.

Diese Arbeit untersucht die fundamentale Frage: Inwieweit kann ein generalistischer,
modellfreier Lernalgorithmus wie PPQO die Leistung spezialisierter, mit explizitem Do-
ménenwissen ausgestatteter Algorithmen erreichen oder gar hinsichtlich der Verhaltens-
robustheit dbertreffen?

Daraus leiten sich folgende zentrale Forschungsfragen (RQ) ab:

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 2

2 Stand der Forschung

* RQ1: Wie groB ist die Performance-Licke zwischen einer gelernten Policy und
einer mathematisch optimalen A*-Suche in einer Physik-Umgebung?

* RQ2: FlUhrt das Lernen von Verhaltensmustern (RL) zu einer héheren Konsistenz
und Zuverlassigkeit im Vergleich zu rein reaktiven oder heuristischen Anséatzen?

Im Folgenden werden zuné&chst der Stand der Forschung und die theoretischen Grundla-
gen der verwendeten Algorithmen erlautert (Kapitel 2). Kapitel 3 beschreibt die methodi-
sche Implementierung der vier Agenten und des Trainingsprozesses. In Kapitel 4 erfolgt
eine detaillierte statistische Evaluation der Ergebnisse auf Basis von 10.000 Simulations-
laufen, gefolgt von einer Diskussion der strategischen Starken des PPO-Ansatzes. Die
Arbeit schlie3t in Kapitel 5 mit einem Fazit und einem Ausblick auf zukinftige hybride
Architekturen.

2 Stand der Forschung

Die autonome Steuerung von Agenten in Videospielen hat sich in den letzten Jahrzehnten
von einfachen, regelbasierten Systemen hin zu komplexen, lernenden Architekturen
entwickelt.

2.1 Klassische Suchverfahren in dynamischen Umgebungen

Der A*-Algorithmus [1] gilt als mathematisches Fundament fir die Pfadfindung in stati-
schen Graphen. Er garantiert das Auffinden eines kirzesten Pfades, sofern eine zulassige
Heuristik existiert. In modernen Echtzeit-Spielen wie BouncAl treten jedoch zwei kritische
Probleme auf:

1. Zustandsexplosion: In einer Umgebung mit beweglichen Plattformen und stochas-
tisch agierenden Gegnern wéachst der Suchbaum exponentiell mit der Planungstiefe.
Ein klassischer A* misste fiir jeden Zeitschritt alle mdglichen Zukunftspositionen
aller Objekte simulieren.

2. Forward Model Abhéngigkeit: Suchverfahren sind modellbasiert. Sie benétigen
ein exaktes ,Forward Model” (ein mathematisches Abbild der Spielwelt), um zu-
kinftige Zustdnde vorhersagen zu kénnen [2]. Fehlt dieses Wissen oder ist die
Welt zu komplex, versagen klassische Suchalgorithmen.

In der Mario Al Competition [2] zeigten A*-Agenten zwar eine dominante Performance,
waren jedoch extrem anfallig fir minimale Abweichungen in der Physik-Simulation.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 3

2 Stand der Forschung

2.2 Reinforcement Learning: Von DQN zu PPO

Reinforcement Learning (RL) bietet einen modellfreien Ansatz, bei dem der Agent Stra-
tegien allein durch Interaktion mit der Umgebung lernt. Den Durchbruch fir neuronale
Spiel-Kls markierte Deep Q-Learning (DQN) [3], welches den Wert (Q-Wert) jeder Aktion
schatzt. DQN leidet jedoch oft unter Instabilitit, da kleine Anderungen in den Q-Werten
zu drastischen Springen in der Handlungsstrategie fuhren kénnen.

Ein stabilerer Ansatz sind Policy-Gradient-Methoden, die direkt die Handlungsstrategie
mg optimieren. Proximal Policy Optimization (PPO) [4] hat sich hierbei als Industriestan-
dard etabliert. Der entscheidende Vorteil von PPO ist die ,Clipped Surrogate Objective
Function®. Diese Funktion begrenzt (,clipping“), wie stark sich die neue Strategie von
der alten unterscheiden darf. Dies verhindert das geflrchteten ,Kollabieren® des Lern-
prozesses, bei dem ein Agent bereits gelerntes Wissen durch ein zu grof3es Update
schlagartig vergisst. PPO vereint dabei die mathematische Stabilitdt von Trust Region Po-
licy Optimization (TRPO) mit der Implementierungseinfachheit von Gradientenverfahren
[5].

2.3 Curriculum Learning und strukturiertes Lernen

Das Erlernen komplexer Aufgaben ,from scratch® scheitert oft an der ,Sparse Reward*
Problematik: Ein Agent, der zu Beginn nur zuféllig agiert, wird in einer schwierigen Umge-
bung (z.B. Tier 10000 mit Wind und Gegnern) fast nie eine positive Belohnung erhalten
und somit nicht lernen. Bengio et al. [6] fUhrten hierzu das Curriculum Learning ein, das
auf der padagogischen Idee basiert, Aufgaben in einer aufsteigenden Schwierigkeitsfolge
zu prasentieren. Der Agent lernt erst fundamentale Bewegungsmuster (Springen auf
statische Plattformen) und wird erst nach Beherrschung dieser mit weiteren Stérfaktoren
(Wind, bewegliche Ziele) konfrontiert. Dies erlaubt es dem Optimierungsalgorithmus,
kontinuierlich einem steilen Gradienten zu folgen, anstatt in lokalen Minima oder Plateaus
zu stagnieren.

2.4 Stabilisierung durch Normalisierung

Die numerische Stabilitat tiefer neuronaler Netze in RL-Szenarien ist haufig durch extrem
schwankende Belohnungen (Rewards) geféhrdet. Zur Kompensation wird Layer Normali-
zation [7] eingesetzt. Dabei werden die Aktivierungen innerhalb des Netzwerks fiir jedes
Datenpaket normiert. Dies reduziert den internen ,Covariate Shift* und erlaubt héhere
Lernraten bei gleichzeitig stabilerer Konvergenz, was flr die effiziente Merkmalsextraktion
aus dem 72-dimensionalen Zustandsraum von BouncAl essenziell ist.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 4

3 Methodik und Agenten

3 Methodik und Agenten

In diesem Kapitel werden die technischen Implementierungen der untersuchten Agenten-
Architekturen detailliert beschrieben. Alle Agenten operieren in derselben Umgebung
BouncAl, unterscheiden sich jedoch fundamental in ihrer Informationsverarbeitung und
Entscheidungsfindung.

3.1 Klassische Agenten

Diese Agenten basieren auf explizit programmierten Regeln und nutzen physikalisches
Domé&nenwissen.

3.1.1 Greedy Reflex Agent

Der Reflex-Agent reprasentiert die einfachste Stufe der Intelligenz. Er verfolgt eine rein
reaktive, gierige Strategie:

1. Umgebungsscan: Er scannt die Umgebung nach der héchsten, innerhalb eines
Zeitfensters erreichbaren Plattform.

2. Bewegungsplanung: Er berechnet die notwendige horizontale Bewegung, um
das Zentrum dieser Plattform zu erreichen.

3. Einschrankungen: Er ignoriert Gegner, Windkréafte und die langfristige Erreichbar-
keit héherer Ebenen.

Seine Effektivitat sinkt drastisch in Tier-Bereichen mit hoher Gegnerdichte, da er keinerlei
Ausweichlogik besitzt.

3.1.2 Utility-based Agent (Heuristic)

Der Utility-Agent nutzt eine gewichtete Nutzenfunktion U (s, a), um Aktionen zu bewerten.
Er fOhrt fUr potenzielle Zielplattformen eine Kurzzeit-Simulation durch, um das Risiko
einer Kollision abzuwégen. Die Funktion ist definiert als:

U = w; - H6hengewinn — ws - Kollisionsrisiko + w3 - Optionen (1)

Die Gewichte wurden empirisch auf w; = 10 (Hé6hengewinn), ws ~ 5000 (Risiko, expo-
nentiell) und ws = 100 (Zukunftsoptionen) festgelegt, um Sicherheit Gber bloBen Gewinn
zu stellen. Hierbei werden Gegnerpositionen durch ein lineares Modell pradiziert. Ein
.Desperate Mode” (Rettungsmodus) wird aktiviert, wenn der Agent zu fallen droht.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 5

3 Methodik und Agenten

3.2 Der A*-Agent (Heuristic Search)

Der A*-Agent stellt die komplexeste algorithmische Lésung dar. Er kombiniert globale
Pfadsuche mit einer hierarchischen Entscheidungslogik in vier Ebenen:

1. Survival Reflex (Layer 1): Bevor eine Suche gestartet wird, pruft der Agent auf un-
mittelbare Lebensgefahr durch Gegner. In diesem Fall wird die Suche abgebrochen
und ein deterministisches Ausweichmandver eingeleitet.

2. Plan Validation (Layer 2): Existiert ein Pfad aus einem vorherigen Zeitschritt, wird
gepruft, ob dieser durch unvorhergesehene Umgebungséanderungen (z.B. Wind)
noch physikalisch erreichbar ist.

3. A* Search (Layer 3): Die Welt wird als Graph diskretisiert, wobei Plattformen als
Knoten fungieren.

» Suchhorizont: Der Algorithmus sucht den Pfad Giber den gesamten sichtba-
ren Bereich (alle Plattformen bis zum oberen Bildschirmrand, y = 0), was ca.
10-15 zukunftigen Stufen entspricht. Der Agent nutzt dabei eine interne Kopie
der Spielphysik (Forward Model), um zukiinftige Zustande deterministisch
zu pradizieren. Da die Simulation in BouncAl (bis auf die Generierung neuer
Objekte) deterministisch ist, agiert dieses Modell als quasi-perfektes Orakel,
das Wind und Gegnerbewegungen exakt vorausberechnet.

» Kosten g(n): Summe aus der Flugzeit At, dem akkumulierten Risiko (N&he
zu Gegnern entlang der Trajektorie) und dem ,Effort* (benétigte Horizontalge-
schwindigkeit).

* Heuristik i(n): Die vertikale Distanz y zum oberen Bildschirmrand. Da klei-
nere y-Werte héhere Positionen markieren, minimiert A* effektiv die Héhen-
differenz.

4. Motor Control (Layer 4): Die Umwandlung des Pfades in diskrete Aktionen (Left,
Right, Wait), wobei Windkréfte durch eine Vorsteuerung kompensiert werden.

3.3 Der PPO-Agent (Deep Reinforcement Learning)

Im Gegensatz zu den regelbasierten Agenten lernt das PPO-Modell die Spielphysik ohne
initiales Wissen.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 6

3 Methodik und Agenten

3.3.1 Zustandsreprasentation (Observation Space)

Der Agent erhalt einen 72-dimensionalen Merkmalsvektor, der die Umgebung wie folgt
kodiert:

+ Spieler-Dynamik (5): Position, normalisierte Geschwindigkeit (v./10, v, /20) und
ein binarer Ground-Contact-Flag.

+ Objekt-Sensorik (66): Die 8 nachsten Plattformen (je 6 Parameter: Az, Ay, w, v,,
Typ, Prasenz), die 3 nachsten Gegner (je 4 Parameter) und 2 Windzonen (je 3
Parameter).

+ Globaler Kontext (1): Das aktuelle Tier-Niveau zur Einordnung der Schwierigkeit.

3.3.2 Netzwerkarchitektur und Hyperparameter

Das Modell nutzt eine Actor-Critic Architektur mit einem geteilten Feature-Extraktor (Sha-
red Backbone), wodurch beide Teilnetze von denselben Low-Level-Reprasentationen
profitieren und die Trainingseffizienz gesteigert wird.

+ Struktur: Drei vollvernetzten Schichten (512 — 256 — 128 Neuronen). Um die
Trainingsstabilitdt zu maximieren, wird nach jeder linearen Transformation Layer
Normalization angewendet, was die Eingabeverteilung normalisiert (Mittelwert
0, Varianz 1) und so das Gradientenverhalten glattet. Als Aktivierungsfunktion
dient die Rectified Linear Unit (ReLU, f(x) = max(0, z)), welche durch ihre Nichtli-
nearitat das Lernen komplexer Zusammenhange ermdglicht und gleichzeitig das
Problem verschwindender Gradienten bei tiefen Netzwerken effektiv verhindert.
Diese Architektur wurde als optimaler Kompromiss zwischen Modellkapazitat und
Rechenaufwand ermittelt.

« Training: Batch-Size von 40.960 Samples, Learning Rate 5 - 10~° und ein Entropy-
Koeffizient, der wahrend des Polishing-Prozesses auf 0, 0005 gesenkt wurde. Das
Training erfolgte Uber eine Belohnungsfunktion R, die den vertikalen Fortschritt
(Ay) positiv gewichtet und Kollisionen mit einem Malus versieht.

3.3.3 Reward Shaping

Die Reward-Funktion wurde als dichtes Signal konzipiert, das den Agenten nicht nur
fir das Endergebnis belohnt, sondern kontinuierlich zur H6henmaximierung fihrt. Der
Reward r; zum Zeitpunkt ¢ setzt sich aus drei Hauptkomponenten zusammen:

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 7

3 Methodik und Agenten

1. Vertical Progress Reward: Ein proportionaler Gewinn basierend auf der vertikalen
Distanz Ay, die seit dem letzten Frame zuriickgelegt wurde:

()

0,0017 - Ay falls Ay >0
Tclimb =
0 sonst

Da der reine Game-Score in Pixeln gemessen wird, skaliert dieser Faktor (ca.
1/600) die Belohnung auf einen fur das neuronale Netz verarbeitbaren Bereich.

2. Survivability Incentives:
 Survival Bonus: +0, 005 pro Frame, um das reine Uberleben zu belohnen.
+ Collision Penalty: Ein Malus von —2, 0 fir Kollisionen mit Gegnern.
 Fall Penalty: —1, 0 fir das Herausfallen aus dem Bildschirmbereich.

Die Bestrafung fur Gegnerkollisionen (doppelt so hoch wie fur Abstirze) erzieht
den Agenten dazu, Feinde aktiv zu meiden, anstatt riskante Spriinge zu wagen.

3. Action Stability Penalty: Um das sténdige Oszillieren zwischen Aktionen (z.B.
schnelles Wechseln von Links nach Rechts) zu unterdriicken, wird eine Strafe von
—0, 005 verhéangt, wenn die gewahlte Aktion von der vorherigen abweicht.

Formal Iasst sich die Reward-Funktion R als gewichtete Summe definieren:
Riotar = 0,0017 - Ay + Raive — 2,0 - Leoltision — 1, 0 - Itay (3)

Dieser starke Malus unterscheidet den Ansatz von rein gierigen Heuristiken und priorisiert
die langfristige Existenzsicherung.

3.3.4 Trainings-Historie und Modell-Evolution

Das finale Modell ist das Ergebnis eines iterativen Entwicklungsprozesses, der sich Uber
mehrere experimentelle Phasen erstreckte. Diese Historie erklart die spezifische Wahl
der Hyperparameter:

1. Phase 1: Foundation (PPO v1): Initiale Experimente mit kleinen Batch-Sizes (64)
und einer aggressiven Lernrate (1 - 10~%) zeigten, dass der Agent grundsatzlich in
der Lage ist, die Physikspriinge zu erlernen, jedoch stark unter hoher Varianz litt.

2. Phase 2: Exploration (PPO v4): Um den Zustandsraum maximal zu explorieren,
wurde das Netzwerk drastisch vergroBert (Hidden-Dim 1024) und der Entropy-
Koeffizient auf 0,01 erhéht. Dies férderte kreative Lésungsansatze, fihrte aber
zu instabilem Verhalten bei prazisen Landungen. Fachlich deutet dies auf eine
Uberanpassung (Overfitting) an das hochfrequente Rauschen der stochastischen
Physik-Updates hin, wodurch die Generalisierungsféhigkeit des Modells auf neue
Situationen litt.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 8

4 Evaluation

3. Phase 3: Polishing (PPO v5): In der finalen Phase wurde das Netzwerk auf
512 Neuronen kondensiert und die Batch-Size auf 40.960 erhéht, um das ,Rau-
schen” der Gradienten zu minimieren. Entscheidend war die Reduktion der Entropie
auf 0,0005, was den Agenten von einem explorativen ,Sucher” zu einem prazi-
sen ,Exekutor” transformierte. Das so entstandene Modell erreichte konsistente
Durchschnitts-Scores von ca. 14.300 Punkten.

3.3.5 Curriculum Learning Phasen
Um die Konvergenz in der stochastischen Umgebung sicherzustellen, wurde der Agent
durch funf Schwierigkeitsstufen (Tiers) geflhrt:

* Tier 0: Erlernen stabiler Sprungmuster auf breiten, statischen Basen.

« Tier 3500: Einflhrung horizontaler Plattformbewegungen (Timing-Aspekt).

+ Tier 5500: Simulation von Windkraften (Kompensation von Drift).

« Tier 7500: Plattformverkleinerung zur Steigerung der Landeprazision.

 Tier 10000: Dynamische Gegner (aktives Ausweichen).

Dieses Vorgehen verhinderte das Stagnieren in lokalen Minima wahrend der friihen
Explorationsphase.

4 Evaluation

4.1 Ergebnisse

Tabelle 1 zeigt die aggregierten Ergebnisse der N = 10.000 Simulationslaufe pro Agent.

Agent Mean Score Max Score Std Dev (o)

A* 19.030 36.475 4.969
Utility 14.939 28.943 3.787
PPO 14.283 25.415 3.435
Reflex 7.507 27.893 5.920

Tabelle 1: Vergleich der Agenten-Performance basierend auf 10.000 Episoden.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 9

4 Evaluation

Average Score by Agent (Error Bars = Std Dev)
25000

20000

15000

Score

10000

5000

Agent

Abbildung 1: Durchschnittliche Scores der Agenten. Die Fehlerbalken visualisieren die
Standardabweichung der Ergebnisse.

Abbildung 1 zeigt die durchschnittlich erreichten Scores. Wahrend der A*-Agent erwar-
tungsgeman die hdchste absolute Performanz erzielt, verdeutlichen die Fehlerbalken
(Standardabweichung o) das zentrale Paradoxon der regelbasierten Steuerung: Trotz
hoher Mittelwerte (insbesondere bei A*) weisen sowohl A* (o ~ 4.969) als auch der
Reflex-Agent (o ~ 5.920) eine signifikante Ergebnisstreuung auf. Im Gegensatz dazu
demonstriert der PPO-Agent (o ~ 3.435) ein deutlich engeres Konfidenzintervall, was
auf eine stabilere Policy hindeutet.

4.2 Statistische Signifikanz und Verteilung

Die statistische Uberlegenheit des A*-Agenten gegeniber allen anderen Modellen wur-
de mittels Mann-Whitney-U-Test bestétigt (p ~ 0). Dies validiert Hypothese H1 und
unterstreicht den Wert eines prazisen Weltmodells flr die Pfadoptimierung.

Die Analyse der Score-Verteilungen in Abbildung 2 offenbart die Gberlegene Konsistenz
des RL-Ansatzes. Das PPO-Modell weist den geringsten Interquartilsabstand (IQR) auf.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 10

4 Evaluation

Besonders hervorzuheben ist die Lage des unteren Whiskers: Wahrend der Reflex-
Agent und selbst die Utility-Heuristik regelmaBig in frihen Spielphasen scheitern (Sco-
res < 1000), liegt das 25%-Quartil von PPO signifikant héher. Dies belegt, dass der
Agent durch das Curriculum Learning gelernt hat, kritische ,Totalausféalle” durch robuste
Ausweichmandver fast vollstandig zu eliminieren. PPO liefert somit eine verlassliche
Mindestperformanz, die Uber der der klassischen Heuristiken liegt.

Score Distribution by Agent Type (N=10000)
35000

30000
25000 -

20000

Score

10000

5000 —

O - & A
Q Aa N 5@
< N ¢
Agent

Abbildung 2: Boxplot der Score-Verteilungen flr die untersuchten Agenten.

4.3 Dichteanalyse

Die Kernel Density Estimation (KDE) in Abbildung 3 illustriert die unterschiedlichen
strategischen Profile. Die Verteilung des PPO-Agenten ist stark kurzsichtig (steilzligig)
und konzentriert sich dicht um das Leistungsmaximum des Utility-Agenten. Im Gegensatz
dazu ist die Verteilung von A* deutlich flacher (platykurtisch) und rechtsschief. Dies
impliziert, dass A* zwar in der Lage ist, auBBergewdhnliche Spitzenwerte (Outlier) durch
perfekte Planung zu erreichen, PPO jedoch eine stabilere, wenn auch im Maximum
begrenzte, Verhaltensstrategie (,Steady State) verfolgt.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 11

4 Evaluation

Score Density Distribution

0.000175 Agent
’ 1 PPO
A
0.000150 Utility
[Reflex
0.000125
2
% 0.000100
c
o}
o
0.000075
0.000050
0.000025
0.000000
30000 40000

Abbildung 3: Kernel Density Estimation (KDE) der Scores.

4.4 Zuverlassigkeit

Das Uberlebensverhalten der Agenten wird durch die empirische Verteilungsfunktion
(ECDF) in Abbildung 4 charakterisiert. Die Kurven von A* und Utility folgen einem nahezu
linearen Abfall Gber weite Strecken, was auf eine konstante Fehlerwahrscheinlichkeit
hindeutet. Der PPO-Agent zeigt bis zu einem Score von ca. 12.000 eine extrem hohe
Uberlebenswahrscheinlichkeit, die erst in den spaten, hochstochastischen Tier-Bereichen
(> 10.000 H6heneinheiten) abnimmt. Im Vergleich zum Reflex-Agenten, dessen Kurve
bereits friih exponentiell abfallt, beweist PPO eine deutlich héhere Resilienz gegenlber
den kumulativen Stérfaktoren wie Wind und Gegnerdichte.

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 12

5 Fazit und Ausblick

10 Survival Probability (ECDF)

Agent
—— PPO
A*
0.8 —— Utility
—— Reflex
c 06
K<)
£
[e]
Q
<]
& o4
0.2
0.0
0 5000 10000 15000 20000 25000 30000 35000

Score

Abbildung 4: Uberlebenswahrscheinlichkeit (ECDF) der Agenten im Spielverlautf.

5 Fazit und Ausblick

In dieser Arbeit wurden vier fundamentale Paradigmen der kunstlichen Intelligenz in der
dynamischen Umgebung BouncAl evaluiert. Die Ergebnisse liefern klare Antworten auf
die eingangs formulierten Forschungsfragen.

Die Studie bestatigt die Dominanz modellbasierter Suchverfahren (RQ1): Der A*-Agent
erzielt durch mathematisch exakte Vorausplanung die héchsten Scores und stellt die
theoretische Obergrenze der Performance dar. Dennoch demonstriert der Erfolg des PPO-
Modells die enorme Leistungsfahigkeit des Reinforcement Learnings. Ohne explizites
Wissen Uber physikalische Gesetze erreichte der Agent fast 96% der Leistung der
Experten-Heuristik, was ihn fir Echtzeitanwendungen pradestiniert.

Der wesentliche Beitrag dieser Arbeit liegt in der Identifikation der strategischen Robust-
heit von PPO (RQ2). Wahrend klassische Heuristiken und einfache Reflex-Agenten eine
hohe Varianz aufweisen und stark von vorteilhaften Umgebungsbedingungen abhéngen,
liefert PPO ein hochgradig konsistentes Verhalten. Die geringere Standardabweichung
kennzeichnet den RL-Agenten als stabilen Ansatz, auch wenn er die absoluten Spitzen-
werte der A*-Suche nicht ganz erreicht.

Far zukunftige Forschungsarbeiten ergeben sich aus diesen Erkenntnissen zwei vielver-
sprechende Richtungen:

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 13

Literatur

« Imitation Learning: Die Nutzung von A*-Trajektorien als Experten-Daten fir ein
Behavior Cloning kénnte die friihe Explorationsphase von PPO massiv beschleuni-
gen und die statistische Unschéarfe bei der Landung weiter reduzieren.

» Hybride Architekturen: Die Kombination einer schnellen PPO-Policy fur die mo-
torische Steuerung mit einer gelegentlichen, tieferen A*-Suche fir strategische
Entscheidungen (z.B. Routenwahl in Sackgassen) kdnnte das Beste aus beiden
Welten vereinen.

AbschlieBend lasst sich festhalten, dass RL-Agenten in dynamischen Welten keine blo3e
Alternative zu klassischen Algorithmen sind, sondern durch ihre Robustheit und Effizienz
eine neue Qualitat der autonomen Steuerung ermdglichen.

Literatur

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Peter E Hart, Nils J Nilsson und Bertram Raphael. ,A formal basis for the heuristic
determination of minimum cost paths®. In: IEEE transactions on Systems Science
and Cybernetics 4.2 (1968), S. 100-107.

Julian Togelius, Sergey Karakovskiy und Robin Baumgarten. ,The 2009 mario ai
competition®. In: IEEE Congress on Evolutionary Computation. |IEEE. 2010, S. 1-8.

Volodymyr Mnih u. a. ,Human-level control through deep reinforcement learning®. In:
nature 518.7540 (2015), S. 529-533.

John Schulman u. a. ,Proximal policy optimization algorithms®. In: arXiv preprint
arXiv:1707.06347 (2017).

Niels Justesen u. a. ,Deep learning for video game playing®. In: IEEE Transactions
on Games 12.1 (2019), S. 1-20.

Yoshua Bengio u.a. ,Curriculum learning®. In: Proceedings of the 26th annual
international conference on machine learning. 2009, S. 41—48.

Jimmy Lei Ba, Jamie Ryan Kiros und Geoffrey E Hinton. ,Layer normalization®. In:
arXiv preprint arXiv:1607.06450 (2016).

Simon Hértzsch: Vergleich von Kl-Agenten in BouncAl 14

