
Research Article

Algorithmische Dominanz vs. Gelerntes
Verhalten: Ein Vergleich von A*, Heuristik

und PPO in BouncAI
Evaluation klassischer Suchverfahren und moderner Reinforcement

Learning Ansätze in einer stochastischen Umgebung

Simon Hörtzsch

13. Januar 2026
TU Bergakademie Freiberg

Zusammenfassung

Die Steuerung autonomer Agenten in dynamischen Echtzeit-Umgebungen
stellt eine klassische Herausforderung der Künstlichen Intelligenz dar.
Während modellbasierte Suchalgorithmen wie A∗ theoretisch optimale
Lösungen liefern, skalieren sie oft schlecht mit der Komplexität des
Zustandsraums und hängen massiv von der Präzision eines Weltmodells
ab. Reinforcement Learning (RL) verspricht als datengetriebener Ansatz,
komplexe Handlungsstrategien allein durch Interaktion zu erlernen, kämpft
jedoch häufig mit Instabilität und hoher Varianz im Lernprozess.

Diese Arbeit präsentiert eine umfassende Vergleichsstudie vierer
unterschiedlicher Agenten-Architekturen in der vertikalen „Infinite Scroller“-
Umgebung BouncAI: einen reaktiven Reflex-Agenten, einen heuristischen
Utility-Agenten, einen modellbasierten A∗-Agenten und einen mittels
Proximal Policy Optimization (PPO) trainierten RL-Agenten. Um den
Trainingserfolg des PPO-Modells in dieser hochgradig stochastischen
Umgebung zu gewährleisten, wurde ein Curriculum Learning Ansatz
implementiert, der die Schwierigkeit der Spielphysik stufenweise steigert.

Die Evaluation auf Basis von N = 10.000 Simulationsläufen pro Agent zeigt,
dass der A∗-Agent mit einem durchschnittlichen Score von 19.030 Punkten
die höchste Performance erzielt, sofern ein fehlerfreies Vorhersagemodell

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 1



1 Einleitung

existiert. Das trainierte PPO-Modell erreicht 14.283 Punkte und nähert sich
damit auf 95,6 % der Leistung des handoptimierten Utility-Agenten an. Ein
zentrales Ergebnis der Studie ist die strategische Robustheit des PPO-
Agenten: Mit der geringsten Standardabweichung aller Probanden (σ = 3.435)
demonstriert er ein hochgradig konsistentes Verhalten, das unabhängig von
Umgebungsfluktuationen verlässliche Mindestperformances garantiert. Die
Ergebnisse belegen, dass moderne RL-Verfahren nicht nur mit spezialisierten
Heuristiken konkurrieren können, sondern diesen in puncto Verhaltensstabili-
tät oft überlegen sind.

1 Einleitung

Die Entwicklung künstlicher Intelligenz für Videospiele dient seit Jahrzehnten als wich-
tiges Testfeld für Algorithmen, die Entscheidungen unter Unsicherheit, physikalischen
Beschränkungen und striktem Zeitdruck treffen müssen. Spiele fungieren hierbei als
kontrollierte Laborumgebungen für Probleme, die in ihrer Kernstruktur — wie etwa die
Pfadplanung oder das Ausweichen von Hindernissen — direkt auf reale Anwendungen
in der Robotik oder autonomen Systemen übertragbar sind.

Das in dieser Arbeit verwendete Spiel BouncAI stellt einen vertikalen Scroller dar, in
dem ein Agent durch gezielte Sprünge auf Plattformen an Höhe gewinnen muss. Diese
Umgebung ist durch eine hybride Komplexität charakterisiert: Während die Flugbahn
des Spielers einer streng deterministischen Parabel folgt, führen bewegliche Plattformen,
Windkräfte und stochastisch erscheinende Gegner zu einem dynamisch fluktuierenden
Zustandsraum. Ein erfolgreicher Agent muss daher nicht nur reaktiv handeln, sondern
die Spielphysik antizipieren und langfristige Trajektorien planen.

Traditionell wurden solche Aufgaben durch spezialisierte Suchalgorithmen (z.B. A∗) ge-
löst, die den mathematisch optimalen Pfad durch den Zustandsraum berechnen. Solche
Ansätze erfordern jedoch ein exaktes „Forward Model“ der Welt und sind rechenintensiv.
Heuristische Verfahren hingegen bieten zwar Effizienz, leiden jedoch unter der Notwen-
digkeit einer manuellen Regeldefinition („Hardcoding“), die häufig unflexibel gegenüber
unvorhergesehenen Situationen ist. Mit dem Aufstieg des Deep Reinforcement Learnings
(RL) hat sich ein Paradigma etabliert, bei dem Agenten Strategien durch Versuch und
Irrtum (Trial-and-Error) selbstständig entwickeln.

Diese Arbeit untersucht die fundamentale Frage: Inwieweit kann ein generalistischer,
modellfreier Lernalgorithmus wie PPO die Leistung spezialisierter, mit explizitem Do-
mänenwissen ausgestatteter Algorithmen erreichen oder gar hinsichtlich der Verhaltens-
robustheit übertreffen?

Daraus leiten sich folgende zentrale Forschungsfragen (RQ) ab:

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 2



2 Stand der Forschung

• RQ1: Wie groß ist die Performance-Lücke zwischen einer gelernten Policy und
einer mathematisch optimalen A∗-Suche in einer Physik-Umgebung?

• RQ2: Führt das Lernen von Verhaltensmustern (RL) zu einer höheren Konsistenz
und Zuverlässigkeit im Vergleich zu rein reaktiven oder heuristischen Ansätzen?

Im Folgenden werden zunächst der Stand der Forschung und die theoretischen Grundla-
gen der verwendeten Algorithmen erläutert (Kapitel 2). Kapitel 3 beschreibt die methodi-
sche Implementierung der vier Agenten und des Trainingsprozesses. In Kapitel 4 erfolgt
eine detaillierte statistische Evaluation der Ergebnisse auf Basis von 10.000 Simulations-
läufen, gefolgt von einer Diskussion der strategischen Stärken des PPO-Ansatzes. Die
Arbeit schließt in Kapitel 5 mit einem Fazit und einem Ausblick auf zukünftige hybride
Architekturen.

2 Stand der Forschung

Die autonome Steuerung von Agenten in Videospielen hat sich in den letzten Jahrzehnten
von einfachen, regelbasierten Systemen hin zu komplexen, lernenden Architekturen
entwickelt.

2.1 Klassische Suchverfahren in dynamischen Umgebungen

Der A∗-Algorithmus [1] gilt als mathematisches Fundament für die Pfadfindung in stati-
schen Graphen. Er garantiert das Auffinden eines kürzesten Pfades, sofern eine zulässige
Heuristik existiert. In modernen Echtzeit-Spielen wie BouncAI treten jedoch zwei kritische
Probleme auf:

1. Zustandsexplosion: In einer Umgebung mit beweglichen Plattformen und stochas-
tisch agierenden Gegnern wächst der Suchbaum exponentiell mit der Planungstiefe.
Ein klassischer A∗ müsste für jeden Zeitschritt alle möglichen Zukunftspositionen
aller Objekte simulieren.

2. Forward Model Abhängigkeit: Suchverfahren sind modellbasiert. Sie benötigen
ein exaktes „Forward Model“ (ein mathematisches Abbild der Spielwelt), um zu-
künftige Zustände vorhersagen zu können [2]. Fehlt dieses Wissen oder ist die
Welt zu komplex, versagen klassische Suchalgorithmen.

In der Mario AI Competition [2] zeigten A∗-Agenten zwar eine dominante Performance,
waren jedoch extrem anfällig für minimale Abweichungen in der Physik-Simulation.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 3



2 Stand der Forschung

2.2 Reinforcement Learning: Von DQN zu PPO

Reinforcement Learning (RL) bietet einen modellfreien Ansatz, bei dem der Agent Stra-
tegien allein durch Interaktion mit der Umgebung lernt. Den Durchbruch für neuronale
Spiel-KIs markierte Deep Q-Learning (DQN) [3], welches den Wert (Q-Wert) jeder Aktion
schätzt. DQN leidet jedoch oft unter Instabilität, da kleine Änderungen in den Q-Werten
zu drastischen Sprüngen in der Handlungsstrategie führen können.

Ein stabilerer Ansatz sind Policy-Gradient-Methoden, die direkt die Handlungsstrategie
πθ optimieren. Proximal Policy Optimization (PPO) [4] hat sich hierbei als Industriestan-
dard etabliert. Der entscheidende Vorteil von PPO ist die „Clipped Surrogate Objective
Function“. Diese Funktion begrenzt („clipping“), wie stark sich die neue Strategie von
der alten unterscheiden darf. Dies verhindert das gefürchteten „Kollabieren“ des Lern-
prozesses, bei dem ein Agent bereits gelerntes Wissen durch ein zu großes Update
schlagartig vergisst. PPO vereint dabei die mathematische Stabilität von Trust Region Po-
licy Optimization (TRPO) mit der Implementierungseinfachheit von Gradientenverfahren
[5].

2.3 Curriculum Learning und strukturiertes Lernen

Das Erlernen komplexer Aufgaben „from scratch“ scheitert oft an der „Sparse Reward“
Problematik: Ein Agent, der zu Beginn nur zufällig agiert, wird in einer schwierigen Umge-
bung (z.B. Tier 10000 mit Wind und Gegnern) fast nie eine positive Belohnung erhalten
und somit nicht lernen. Bengio et al. [6] führten hierzu das Curriculum Learning ein, das
auf der pädagogischen Idee basiert, Aufgaben in einer aufsteigenden Schwierigkeitsfolge
zu präsentieren. Der Agent lernt erst fundamentale Bewegungsmuster (Springen auf
statische Plattformen) und wird erst nach Beherrschung dieser mit weiteren Störfaktoren
(Wind, bewegliche Ziele) konfrontiert. Dies erlaubt es dem Optimierungsalgorithmus,
kontinuierlich einem steilen Gradienten zu folgen, anstatt in lokalen Minima oder Plateaus
zu stagnieren.

2.4 Stabilisierung durch Normalisierung

Die numerische Stabilität tiefer neuronaler Netze in RL-Szenarien ist häufig durch extrem
schwankende Belohnungen (Rewards) gefährdet. Zur Kompensation wird Layer Normali-
zation [7] eingesetzt. Dabei werden die Aktivierungen innerhalb des Netzwerks für jedes
Datenpaket normiert. Dies reduziert den internen „Covariate Shift“ und erlaubt höhere
Lernraten bei gleichzeitig stabilerer Konvergenz, was für die effiziente Merkmalsextraktion
aus dem 72-dimensionalen Zustandsraum von BouncAI essenziell ist.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 4



3 Methodik und Agenten

3 Methodik und Agenten

In diesem Kapitel werden die technischen Implementierungen der untersuchten Agenten-
Architekturen detailliert beschrieben. Alle Agenten operieren in derselben Umgebung
BouncAI, unterscheiden sich jedoch fundamental in ihrer Informationsverarbeitung und
Entscheidungsfindung.

3.1 Klassische Agenten

Diese Agenten basieren auf explizit programmierten Regeln und nutzen physikalisches
Domänenwissen.

3.1.1 Greedy Reflex Agent

Der Reflex-Agent repräsentiert die einfachste Stufe der Intelligenz. Er verfolgt eine rein
reaktive, gierige Strategie:

1. Umgebungsscan: Er scannt die Umgebung nach der höchsten, innerhalb eines
Zeitfensters erreichbaren Plattform.

2. Bewegungsplanung: Er berechnet die notwendige horizontale Bewegung, um
das Zentrum dieser Plattform zu erreichen.

3. Einschränkungen: Er ignoriert Gegner, Windkräfte und die langfristige Erreichbar-
keit höherer Ebenen.

Seine Effektivität sinkt drastisch in Tier-Bereichen mit hoher Gegnerdichte, da er keinerlei
Ausweichlogik besitzt.

3.1.2 Utility-based Agent (Heuristic)

Der Utility-Agent nutzt eine gewichtete Nutzenfunktion U(s, a), um Aktionen zu bewerten.
Er führt für potenzielle Zielplattformen eine Kurzzeit-Simulation durch, um das Risiko
einer Kollision abzuwägen. Die Funktion ist definiert als:

U = ω1 · Höhengewinn − ω2 · Kollisionsrisiko + ω3 · Optionen (1)

Die Gewichte wurden empirisch auf ω1 = 10 (Höhengewinn), ω2 ≈ 5000 (Risiko, expo-
nentiell) und ω3 = 100 (Zukunftsoptionen) festgelegt, um Sicherheit über bloßen Gewinn
zu stellen. Hierbei werden Gegnerpositionen durch ein lineares Modell prädiziert. Ein
„Desperate Mode“ (Rettungsmodus) wird aktiviert, wenn der Agent zu fallen droht.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 5



3 Methodik und Agenten

3.2 Der A∗-Agent (Heuristic Search)

Der A∗-Agent stellt die komplexeste algorithmische Lösung dar. Er kombiniert globale
Pfadsuche mit einer hierarchischen Entscheidungslogik in vier Ebenen:

1. Survival Reflex (Layer 1): Bevor eine Suche gestartet wird, prüft der Agent auf un-
mittelbare Lebensgefahr durch Gegner. In diesem Fall wird die Suche abgebrochen
und ein deterministisches Ausweichmanöver eingeleitet.

2. Plan Validation (Layer 2): Existiert ein Pfad aus einem vorherigen Zeitschritt, wird
geprüft, ob dieser durch unvorhergesehene Umgebungsänderungen (z.B. Wind)
noch physikalisch erreichbar ist.

3. A∗ Search (Layer 3): Die Welt wird als Graph diskretisiert, wobei Plattformen als
Knoten fungieren.

• Suchhorizont: Der Algorithmus sucht den Pfad über den gesamten sichtba-
ren Bereich (alle Plattformen bis zum oberen Bildschirmrand, y = 0), was ca.
10–15 zukünftigen Stufen entspricht. Der Agent nutzt dabei eine interne Kopie
der Spielphysik (Forward Model), um zukünftige Zustände deterministisch
zu prädizieren. Da die Simulation in BouncAI (bis auf die Generierung neuer
Objekte) deterministisch ist, agiert dieses Modell als quasi-perfektes Orakel,
das Wind und Gegnerbewegungen exakt vorausberechnet.

• Kosten g(n): Summe aus der Flugzeit ∆t, dem akkumulierten Risiko (Nähe
zu Gegnern entlang der Trajektorie) und dem „Effort“ (benötigte Horizontalge-
schwindigkeit).

• Heuristik h(n): Die vertikale Distanz y zum oberen Bildschirmrand. Da klei-
nere y-Werte höhere Positionen markieren, minimiert A∗ effektiv die Höhen-
differenz.

4. Motor Control (Layer 4): Die Umwandlung des Pfades in diskrete Aktionen (Left,
Right, Wait), wobei Windkräfte durch eine Vorsteuerung kompensiert werden.

3.3 Der PPO-Agent (Deep Reinforcement Learning)

Im Gegensatz zu den regelbasierten Agenten lernt das PPO-Modell die Spielphysik ohne
initiales Wissen.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 6



3 Methodik und Agenten

3.3.1 Zustandsrepräsentation (Observation Space)

Der Agent erhält einen 72-dimensionalen Merkmalsvektor, der die Umgebung wie folgt
kodiert:

• Spieler-Dynamik (5): Position, normalisierte Geschwindigkeit (vx/10, vy/20) und
ein binärer Ground-Contact-Flag.

• Objekt-Sensorik (66): Die 8 nächsten Plattformen (je 6 Parameter: ∆x,∆y, w, vx,
Typ, Präsenz), die 3 nächsten Gegner (je 4 Parameter) und 2 Windzonen (je 3
Parameter).

• Globaler Kontext (1): Das aktuelle Tier-Niveau zur Einordnung der Schwierigkeit.

3.3.2 Netzwerkarchitektur und Hyperparameter

Das Modell nutzt eine Actor-Critic Architektur mit einem geteilten Feature-Extraktor (Sha-
red Backbone), wodurch beide Teilnetze von denselben Low-Level-Repräsentationen
profitieren und die Trainingseffizienz gesteigert wird.

• Struktur: Drei vollvernetzten Schichten (512 → 256 → 128 Neuronen). Um die
Trainingsstabilität zu maximieren, wird nach jeder linearen Transformation Layer
Normalization angewendet, was die Eingabeverteilung normalisiert (Mittelwert
0, Varianz 1) und so das Gradientenverhalten glättet. Als Aktivierungsfunktion
dient die Rectified Linear Unit (ReLU, f(x) = max(0, x)), welche durch ihre Nichtli-
nearität das Lernen komplexer Zusammenhänge ermöglicht und gleichzeitig das
Problem verschwindender Gradienten bei tiefen Netzwerken effektiv verhindert.
Diese Architektur wurde als optimaler Kompromiss zwischen Modellkapazität und
Rechenaufwand ermittelt.

• Training: Batch-Size von 40.960 Samples, Learning Rate 5 · 10−5 und ein Entropy-
Koeffizient, der während des Polishing-Prozesses auf 0, 0005 gesenkt wurde. Das
Training erfolgte über eine Belohnungsfunktion R, die den vertikalen Fortschritt
(∆y) positiv gewichtet und Kollisionen mit einem Malus versieht.

3.3.3 Reward Shaping

Die Reward-Funktion wurde als dichtes Signal konzipiert, das den Agenten nicht nur
für das Endergebnis belohnt, sondern kontinuierlich zur Höhenmaximierung führt. Der
Reward rt zum Zeitpunkt t setzt sich aus drei Hauptkomponenten zusammen:

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 7



3 Methodik und Agenten

1. Vertical Progress Reward: Ein proportionaler Gewinn basierend auf der vertikalen
Distanz ∆y, die seit dem letzten Frame zurückgelegt wurde:

rclimb =

{
0, 0017 ·∆y falls ∆y > 0

0 sonst
(2)

Da der reine Game-Score in Pixeln gemessen wird, skaliert dieser Faktor (ca.
1/600) die Belohnung auf einen für das neuronale Netz verarbeitbaren Bereich.

2. Survivability Incentives:

• Survival Bonus: +0, 005 pro Frame, um das reine Überleben zu belohnen.

• Collision Penalty: Ein Malus von −2, 0 für Kollisionen mit Gegnern.

• Fall Penalty: −1, 0 für das Herausfallen aus dem Bildschirmbereich.

Die Bestrafung für Gegnerkollisionen (doppelt so hoch wie für Abstürze) erzieht
den Agenten dazu, Feinde aktiv zu meiden, anstatt riskante Sprünge zu wagen.

3. Action Stability Penalty: Um das ständige Oszillieren zwischen Aktionen (z.B.
schnelles Wechseln von Links nach Rechts) zu unterdrücken, wird eine Strafe von
−0, 005 verhängt, wenn die gewählte Aktion von der vorherigen abweicht.

Formal lässt sich die Reward-Funktion R als gewichtete Summe definieren:

Rtotal = 0, 0017 ·∆y +Ralive − 2, 0 · Icollision − 1, 0 · Ifall (3)

Dieser starke Malus unterscheidet den Ansatz von rein gierigen Heuristiken und priorisiert
die langfristige Existenzsicherung.

3.3.4 Trainings-Historie und Modell-Evolution

Das finale Modell ist das Ergebnis eines iterativen Entwicklungsprozesses, der sich über
mehrere experimentelle Phasen erstreckte. Diese Historie erklärt die spezifische Wahl
der Hyperparameter:

1. Phase 1: Foundation (PPO v1): Initiale Experimente mit kleinen Batch-Sizes (64)
und einer aggressiven Lernrate (1 · 10−4) zeigten, dass der Agent grundsätzlich in
der Lage ist, die Physiksprünge zu erlernen, jedoch stark unter hoher Varianz litt.

2. Phase 2: Exploration (PPO v4): Um den Zustandsraum maximal zu explorieren,
wurde das Netzwerk drastisch vergrößert (Hidden-Dim 1024) und der Entropy-
Koeffizient auf 0, 01 erhöht. Dies förderte kreative Lösungsansätze, führte aber
zu instabilem Verhalten bei präzisen Landungen. Fachlich deutet dies auf eine
Überanpassung (Overfitting) an das hochfrequente Rauschen der stochastischen
Physik-Updates hin, wodurch die Generalisierungsfähigkeit des Modells auf neue
Situationen litt.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 8



4 Evaluation

3. Phase 3: Polishing (PPO v5): In der finalen Phase wurde das Netzwerk auf
512 Neuronen kondensiert und die Batch-Size auf 40.960 erhöht, um das „Rau-
schen“ der Gradienten zu minimieren. Entscheidend war die Reduktion der Entropie
auf 0, 0005, was den Agenten von einem explorativen „Sucher“ zu einem präzi-
sen „Exekutor“ transformierte. Das so entstandene Modell erreichte konsistente
Durchschnitts-Scores von ca. 14.300 Punkten.

3.3.5 Curriculum Learning Phasen

Um die Konvergenz in der stochastischen Umgebung sicherzustellen, wurde der Agent
durch fünf Schwierigkeitsstufen (Tiers) geführt:

• Tier 0: Erlernen stabiler Sprungmuster auf breiten, statischen Basen.

• Tier 3500: Einführung horizontaler Plattformbewegungen (Timing-Aspekt).

• Tier 5500: Simulation von Windkräften (Kompensation von Drift).

• Tier 7500: Plattformverkleinerung zur Steigerung der Landepräzision.

• Tier 10000: Dynamische Gegner (aktives Ausweichen).

Dieses Vorgehen verhinderte das Stagnieren in lokalen Minima während der frühen
Explorationsphase.

4 Evaluation

4.1 Ergebnisse

Tabelle 1 zeigt die aggregierten Ergebnisse der N = 10.000 Simulationsläufe pro Agent.

Agent Mean Score Max Score Std Dev (σ)
A* 19.030 36.475 4.969
Utility 14.939 28.943 3.787
PPO 14.283 25.415 3.435
Reflex 7.507 27.893 5.920

Tabelle 1: Vergleich der Agenten-Performance basierend auf 10.000 Episoden.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 9



4 Evaluation

Abbildung 1: Durchschnittliche Scores der Agenten. Die Fehlerbalken visualisieren die
Standardabweichung der Ergebnisse.

Abbildung 1 zeigt die durchschnittlich erreichten Scores. Während der A∗-Agent erwar-
tungsgemäß die höchste absolute Performanz erzielt, verdeutlichen die Fehlerbalken
(Standardabweichung σ) das zentrale Paradoxon der regelbasierten Steuerung: Trotz
hoher Mittelwerte (insbesondere bei A∗) weisen sowohl A∗ (σ ≈ 4.969) als auch der
Reflex-Agent (σ ≈ 5.920) eine signifikante Ergebnisstreuung auf. Im Gegensatz dazu
demonstriert der PPO-Agent (σ ≈ 3.435) ein deutlich engeres Konfidenzintervall, was
auf eine stabilere Policy hindeutet.

4.2 Statistische Signifikanz und Verteilung

Die statistische Überlegenheit des A∗-Agenten gegenüber allen anderen Modellen wur-
de mittels Mann-Whitney-U-Test bestätigt (p ≈ 0). Dies validiert Hypothese H1 und
unterstreicht den Wert eines präzisen Weltmodells für die Pfadoptimierung.

Die Analyse der Score-Verteilungen in Abbildung 2 offenbart die überlegene Konsistenz
des RL-Ansatzes. Das PPO-Modell weist den geringsten Interquartilsabstand (IQR) auf.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 10



4 Evaluation

Besonders hervorzuheben ist die Lage des unteren Whiskers: Während der Reflex-
Agent und selbst die Utility-Heuristik regelmäßig in frühen Spielphasen scheitern (Sco-
res < 1000), liegt das 25%-Quartil von PPO signifikant höher. Dies belegt, dass der
Agent durch das Curriculum Learning gelernt hat, kritische „Totalausfälle“ durch robuste
Ausweichmanöver fast vollständig zu eliminieren. PPO liefert somit eine verlässliche
Mindestperformanz, die über der der klassischen Heuristiken liegt.

Abbildung 2: Boxplot der Score-Verteilungen für die untersuchten Agenten.

4.3 Dichteanalyse

Die Kernel Density Estimation (KDE) in Abbildung 3 illustriert die unterschiedlichen
strategischen Profile. Die Verteilung des PPO-Agenten ist stark kurzsichtig (steilzügig)
und konzentriert sich dicht um das Leistungsmaximum des Utility-Agenten. Im Gegensatz
dazu ist die Verteilung von A* deutlich flacher (platykurtisch) und rechtsschief. Dies
impliziert, dass A* zwar in der Lage ist, außergewöhnliche Spitzenwerte (Outlier) durch
perfekte Planung zu erreichen, PPO jedoch eine stabilere, wenn auch im Maximum
begrenzte, Verhaltensstrategie („Steady State“) verfolgt.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 11



4 Evaluation

Abbildung 3: Kernel Density Estimation (KDE) der Scores.

4.4 Zuverlässigkeit

Das Überlebensverhalten der Agenten wird durch die empirische Verteilungsfunktion
(ECDF) in Abbildung 4 charakterisiert. Die Kurven von A* und Utility folgen einem nahezu
linearen Abfall über weite Strecken, was auf eine konstante Fehlerwahrscheinlichkeit
hindeutet. Der PPO-Agent zeigt bis zu einem Score von ca. 12.000 eine extrem hohe
Überlebenswahrscheinlichkeit, die erst in den späten, hochstochastischen Tier-Bereichen
(> 10.000 Höheneinheiten) abnimmt. Im Vergleich zum Reflex-Agenten, dessen Kurve
bereits früh exponentiell abfällt, beweist PPO eine deutlich höhere Resilienz gegenüber
den kumulativen Störfaktoren wie Wind und Gegnerdichte.

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 12



5 Fazit und Ausblick

Abbildung 4: Überlebenswahrscheinlichkeit (ECDF) der Agenten im Spielverlauf.

5 Fazit und Ausblick

In dieser Arbeit wurden vier fundamentale Paradigmen der künstlichen Intelligenz in der
dynamischen Umgebung BouncAI evaluiert. Die Ergebnisse liefern klare Antworten auf
die eingangs formulierten Forschungsfragen.

Die Studie bestätigt die Dominanz modellbasierter Suchverfahren (RQ1): Der A∗-Agent
erzielt durch mathematisch exakte Vorausplanung die höchsten Scores und stellt die
theoretische Obergrenze der Performance dar. Dennoch demonstriert der Erfolg des PPO-
Modells die enorme Leistungsfähigkeit des Reinforcement Learnings. Ohne explizites
Wissen über physikalische Gesetze erreichte der Agent fast 96% der Leistung der
Experten-Heuristik, was ihn für Echtzeitanwendungen prädestiniert.

Der wesentliche Beitrag dieser Arbeit liegt in der Identifikation der strategischen Robust-
heit von PPO (RQ2). Während klassische Heuristiken und einfache Reflex-Agenten eine
hohe Varianz aufweisen und stark von vorteilhaften Umgebungsbedingungen abhängen,
liefert PPO ein hochgradig konsistentes Verhalten. Die geringere Standardabweichung
kennzeichnet den RL-Agenten als stabilen Ansatz, auch wenn er die absoluten Spitzen-
werte der A∗-Suche nicht ganz erreicht.

Für zukünftige Forschungsarbeiten ergeben sich aus diesen Erkenntnissen zwei vielver-
sprechende Richtungen:

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 13



Literatur

• Imitation Learning: Die Nutzung von A∗-Trajektorien als Experten-Daten für ein
Behavior Cloning könnte die frühe Explorationsphase von PPO massiv beschleuni-
gen und die statistische Unschärfe bei der Landung weiter reduzieren.

• Hybride Architekturen: Die Kombination einer schnellen PPO-Policy für die mo-
torische Steuerung mit einer gelegentlichen, tieferen A∗-Suche für strategische
Entscheidungen (z.B. Routenwahl in Sackgassen) könnte das Beste aus beiden
Welten vereinen.

Abschließend lässt sich festhalten, dass RL-Agenten in dynamischen Welten keine bloße
Alternative zu klassischen Algorithmen sind, sondern durch ihre Robustheit und Effizienz
eine neue Qualität der autonomen Steuerung ermöglichen.

Literatur

[1] Peter E Hart, Nils J Nilsson und Bertram Raphael. „A formal basis for the heuristic
determination of minimum cost paths“. In: IEEE transactions on Systems Science
and Cybernetics 4.2 (1968), S. 100–107.

[2] Julian Togelius, Sergey Karakovskiy und Robin Baumgarten. „The 2009 mario ai
competition“. In: IEEE Congress on Evolutionary Computation. IEEE. 2010, S. 1–8.

[3] Volodymyr Mnih u. a. „Human-level control through deep reinforcement learning“. In:
nature 518.7540 (2015), S. 529–533.

[4] John Schulman u. a. „Proximal policy optimization algorithms“. In: arXiv preprint
arXiv:1707.06347 (2017).

[5] Niels Justesen u. a. „Deep learning for video game playing“. In: IEEE Transactions
on Games 12.1 (2019), S. 1–20.

[6] Yoshua Bengio u. a. „Curriculum learning“. In: Proceedings of the 26th annual
international conference on machine learning. 2009, S. 41–48.

[7] Jimmy Lei Ba, Jamie Ryan Kiros und Geoffrey E Hinton. „Layer normalization“. In:
arXiv preprint arXiv:1607.06450 (2016).

Simon Hörtzsch: Vergleich von KI-Agenten in BouncAI 14


