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Abstract

In Zeiten von leistungsstarken "Large Language Models" (LLMs) wie
ChatGPT und Gemini wird deren Einfluss auf den gesamten Softwa-
reentwicklungsprozess untersucht. Diese Seminararbeit analysiert,
wie KI-Technologien nicht nur die reine Programmierung, son-
dern den kompletten Lebenszyklus der Softwareentwicklung -
von der Anforderungsanalyse tiber die Erstellung von User Per-
sonas und dem UI/UX-Design bis hin zum Testen — verdndern [16].
Es wird der Frage nachgegangen, inwieweit LLMs als kollabora-
tive Partner agieren konnen [14, 18], um die Effizienz zu steigern
und kreative Prozesse zu unterstiitzen. Dabei werden sowohl die
enormen Potenziale zur Automatisierung und Unterstiitzung im
Design- und Forschungsprozess beleuchtet [16, 18] als auch kri-
tische Herausforderungen wie das "Black-Box"-Problem [17], die
Notwendigkeit von Erklarbarkeit und die signifikanten Sicherheit-
srisiken in KI-generiertem Code [10] diskutiert. Ziel ist es, eine dif-
ferenzierte Betrachtung der Chancen und Risiken zu erméglichen
und die Notwendigkeit eines Human-in-the-Loop-Ansatzes zu un-
termauern [14, 17], um eine verantwortungsvolle und effektive
Integration von LLMs in die Softwareentwicklung zu gewahrleis-
ten.
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1 Einleitung

Die rasante Entwicklung von "Large Language Models" (LLMs) hat
begonnen, traditionelle Arbeitsweisen in vielen Branchen grundle-
gend zu verdndern. Insbesondere im Bereich der Softwareentwick-
lung entfalten diese Technologien ein transformatives Potenzial,
das weit tiber die reine Codegenerierung hinausgeht. Wihrend
frithe Diskussionen sich oft auf die Fahigkeit von KI-Assistenten
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zur Erstellung von Code-Snippets konzentrierten, wird heute deut-
lich, dass ihr Einfluss den gesamten Softwareentwicklungszyklus
umfasst: von der initialen Anforderungsanalyse und der Erstellung
von Systemarchitekturen tiber das Design von User Interfaces (UI)
und die Generierung von User Personas bis hin zu automatisierten
Testverfahren und der Wartung von Systemen [16].

Diese Entwicklungen werfen zentrale Fragen im Forschungs-
feld der Mensch-Computer-Interaktion (HCI) auf. Inwieweit kon-
nen LLMs als intelligente Werkzeuge oder sogar als kollaborative
Partner fungieren, um Entwicklerteams zu unterstiitzen und die
Effizienz zu steigern [14, 16]? Welchen Einfluss hat die Integration
von KI auf kreative Prozesse wie das UX-Design, und wie verin-
dert sich die Rolle des menschlichen Entwicklers in diesem neuen
Paradigma der "Mensch-Computer-Co-Kreativitat" [9]?

Um die Leistungsfihigkeit von LLMs im Kontext der Softwa-
reentwicklung zu bewerten, werden spezialisierte Benchmarks
eingesetzt. Wihrend allgemeine Wissenstests primér grundlegende
Fahigkeiten priffen — wie etwa das breite Allgemeinwissen in MMLU
(Massive Multitask Language Understanding) [6, 19], das Experten-
wissen in GPQA (Graduate-Level Google-Proof Q&A) [11] oder das
logische Denkvermodgen in AIME (American Invitational Mathe-
matics Examination) [2], treten fiir die Softwareentwicklung an-
wendungsorientierte Bewertungen in den Vordergrund. Spezial-
isierte Benchmarks wie LiveCodeBench [7] oder der SWE-bench
[1] testen die Fahigkeit von Modellen, reale Probleme aus GitHub-
Repositories zu 16sen und bewerten somit direkt ihre Praxistauglich-
keit im Software Engineering (SWE). Solche praxisnahen Tests sind
entscheidend, um das wahre Potenzial und die Grenzen der ak-
tuellen KI-Modelle einschitzen zu kénnen [7].

Diese Seminararbeit hat zum Ziel, die vielfiltigen Auswirkun-
gen von LLMs auf den modernen Softwareentwicklungsprozess zu
analysieren. Dabei wird ein besonderer Fokus auf den Paradigmen-
wechsel von der reinen Programmierung hin zu einem ganzheitlich-
en, KI-gestiitzten Entwicklungszyklus gelegt. Zunédchst werden die
grundlegenden Konzepte einer auf den Menschen zentrierten KI
(Human-Centered Al) vorgestellt. Darauf aufbauend werden die
Chancen durch KI in der HCI beleuchtet, insbesondere im Hin-
blick auf den Design- und Forschungsprozess. Anschlieflend erfolgt
eine kritische Auseinandersetzung mit den Herausforderungen und
Gefahren, wie dem "Black-Box"-Problem und Sicherheitsrisiken.
Die Auswirkungen auf spezifische Anwendungsfelder, insbeson-
dere das UI- und UX-Design, werden detailliert betrachtet, bevor die
Arbeit mit einer umfassenden Diskussion und einem Fazit schlief3t.
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2 Grundlagen
2.1 Kiinstliche Intelligenz im Kontext von HCI

Die Integration von Kiinstlicher Intelligenz (KI) in interaktive Sys-
teme markiert einen fundamentalen Wandel in der HCI [17]. Tradi-
tionelle HCI-Paradigmen basierten oft auf einer "Reiz-Reaktions"-
Beziehung, bei der ein System deterministisch auf explizite Nutzer-
eingaben reagiert [17]. Moderne KI-Systeme hingegen funktion-
ieren zunehmend autonom, lernen aus groflen Datenmengen und
konnen menschliches Verhalten antizipieren und darauf proaktiv
reagieren. Diese Entwicklung verdndert nicht nur die Art, wie wir
mit Technologie interagieren, sondern auch den Prozess, wie diese
Technologie entworfen und entwickelt wird.

Im Zentrum dieser Transformation steht das Konzept der Human-
Centered AI (HCAI), das fordert, den Menschen in den Mittelpunkt
der Entwicklung von KI-Systemen zu stellen [17]. Anstatt KI als
reines Werkzeug zur Automatisierung zu betrachten, betont der
HCAI-Ansatz die Notwendigkeit, KI-Systeme so zu gestalten, dass
sie menschliche Fahigkeiten erweitern, anstatt sie zu ersetzen [17].
Dieser Ansatz zielt darauf ab, zuverlassige, sichere und vertrauens-
wiirdige KI-Systeme zu schaffen [17]. Um dies zu erreichen, sind
zwei zentrale Prinzipien von entscheidender Bedeutung: Human-
in-the-Loop und Meaningful Human Control.

Input _ m — Output
R/

LLM Tool

Feedback

Human

HUMAN-IN-THE-LOOP

Figure 1: Das Prinzip "Human-in-the-Loop", bei dem men-
schliche Expertise gezielt in automatisierte KI-Workflows
integriert wird. (Bildquelle: [4])

Human-in-the-Loop (Mensch im Kreislauf) beschreibt Systeme,
in denen Menschen aktiv in den Lebenszyklus des KI-Modells einge-
bunden sind [14, 17] (sieche Abbildung 1). Im Kontext der Softwa-
reentwicklung bedeutet dies, dass Entwickler nicht nur passive Kon-
sumenten von KI-generiertem Code oder Designvorschlagen sind.
Stattdessen sind sie aktive Teilnehmer, die das System trainieren,
dessen Ergebnisse tiberpriifen und durch kontinuierliches Feed-
back verfeinern. Dies kann beispielsweise durch die Korrektur von
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KI-generiertem Code oder die Auswahl der besten aus mehreren
Designvarianten geschehen, wodurch das Modell iterativ verbessert
wird.

Meaningful Human Control (Sinnvolle menschliche Kontrolle)
geht noch einen Schritt weiter und fordert, dass Menschen zu jeder
Zeit die ultimative Autoritat und Verantwortung tiber ein KI-System
behalten [17]. Damit diese Kontrolle "sinnvoll" ist, missen drei
Bedingungen erfiillt sein [17]:

e Der Mensch muss die Handlungen des KI-Systems verste-
hen kénnen. Dies adressiert das "Black-Box"-Problem vieler
moderner KI-Modelle, bei denen die Entscheidungsprozesse
intransparent sind [17].

o Der Mensch muss in der Lage sein, das System zu tiberwach-
en und dessen Verhalten nachzuvollziehen. Dies umfasst
sowohl die Uberpriifung der Eingaben als auch der Aus-
gaben des Systems.

e Der Mensch muss das System tibersteuern kénnen, um
dessen Handlungen zu lenken oder zu korrigieren, insbeson-
dere in kritischen Situationen.

Fir die Softwareentwicklung bedeutet dies, dass Entwickler die
Vorschliage einer KI nicht blind iibernehmen diirfen. Sie miissen
die Fahigkeit und die Werkzeuge besitzen, die Funktionsweise, die
Grenzen und die potenziellen Schwachstellen des generierten Codes
oder Designs zu verstehen. Nur so kénnen sie die Verantwortung
fiir die Qualitat und Sicherheit des Endprodukts tragen.

Die Anwendung dieser Prinzipien ist entscheidend, um die Poten-
ziale der KI in der Softwareentwicklung voll auszuschépfen und
gleichzeitig Risiken wie den Verlust von Kontrolle, die Einfithrung
von Sicherheitsliicken oder die Erzeugung von qualitativ minderw-
ertigen Ergebnissen zu minimieren [17].

2.2 Aktuelle Benchmarks leistungsstarker LLMs

Um die Fihigkeiten von "Large Language Models" (LLMs) objek-
tiv zu bewerten und ihre Eignung fiir die vielfiltigen Aufgaben
der Softwareentwicklung zu vergleichen, werden standardisierte
Tests, sogenannte Benchmarks, eingesetzt. Eine ganzheitliche Bew-
ertung erfordert dabei die Betrachtung verschiedener Fahigkeits-
dimensionen. Wihrend allgemeine Benchmarks priméar grundle-
gende Fihigkeiten priifen — wie etwa das breite Allgemeinwissen
in MMLU (6], das Expertenwissen in GPQA [11] oder das logische
Denkvermdgen in AIME [2], sind sie nur bedingt aussagekraftig fur
die direkten, praxisnahen Anforderungen im Software Engineering
[7]. Eine hohe Punktzahl in diesen Tests ist kein Garant fiir die
Erzeugung von qualitativ hochwertigem und sicherem Code.

2.2.1 Spezialisierte Benchmarks fiir die Softwareentwicklung. Aus
diesem Grund wurden spezialisierte Benchmarks entwickelt, die
die Leistung von LLMs direkt im Kontext von Programmier- und
Software-Engineering-Aufgaben messen. Die beiden in der nach-
folgenden Tabelle verglichenen Ansitze sind:

e SWE-bench: Dieser Benchmark gilt als einer der realistis-
chsten Tests zur Messung der Fahigkeit von LLMs, kom-
plexe, reale Probleme aus bekannten GitHub-Repositories
wie ‘django’ oder ‘matplotlib‘ zu 18sen [8]. Anstatt isolierter

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232



233
234
235
236
237
238
239
240
241
242
243
244
245

246

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

Kl in der Mensch-Computer-Interaktion:
Auswirkungen von LLMs auf die Softwareentwicklung

Programmieraufgaben muss hier der gesamte Problemlo-
sungsprozess innerhalb einer bestehenden Codebasis abge-
bildet werden.

e LiveCodeBench: Dieser Benchmark fokussiert sich auf die
interaktive Natur des Programmierens, wie sie in Program-
mierwettbewerben vorkommt. Er bewertet die Fahigkeit
eines Modells, in einer "Live-Coding"-Umgebung neue, zu-
vor ungesehene Probleme zu l6sen, was ihn besonders ro-
bust gegeniiber Datenkontamination macht [7].

2.2.2  Benchmark-Vergleich in der Praxis. Tabelle 1 zeigt einen direk-
ten Leistungsvergleich aktueller KI-Modelle iiber diese verschiede-
nen Fihigkeitsdimensionen hinweg. Die Ergebnisse verdeutlichen,
dass das Leistungsprofil der Modelle stark variiert. So kann ein Mod-
ellin der Logik (AIME) fithrend sein, aber bei der praktischen Fehler-
behebung in echten Repositories (SWE-bench) schwécher abschnei-
den. Besonders aufschlussreich ist der Vergleich zwischen SWE-
bench und LiveCodeBench, da er die unterschiedlichen Starken der
Modelle bei der Arbeit mit bestehendem Code gegeniiber neuen Pro-
grammieraufgaben aufzeigt. Ein weiterer wichtiger Faktor ist das
Kontextfenster, welches die Fahigkeit eines Modells beeinflusst,
komplexe Codebasen zu analysieren.

2.2.3 Kritische Betrachtung und Limitationen von Benchmarks. Ob-
wohl spezialisierte Benchmarks eine deutliche Verbesserung darstel-
len, weisen sie weiterhin signifikante Limitationen auf. Sie messen
oft nur die funktionale Korrektheit, lassen aber entscheidende qual-
itative Aspekte aufler Acht, die in der professionellen Softwareen-
twicklung unerlésslich sind:

o Sicherheit von KI-Output: Die Sicherheit des generierten
Codes wird in der Regel nicht gepriift. Eine umfassende
Nutzerstudie von Perry et al. (2023) belegt dies eindriick-
lich: Entwickler, die Zugang zu einem KI-Assistenten hatten,
schrieben signifikant haufiger unsicheren Code als die Kon-
trollgruppe [10]. Zudem waren sie eher davon iiberzeugt,
sicheren Code verfasst zu haben, was auf eine gefihrliche
Uberschitzung der eigenen Leistung hindeutet [10].

e Wartbarkeit und Code-Qualitit: Benchmarks bewerten
selten die Qualitit des generierten Codes. Aspekte wie Les-
barkeit, Einhaltung von Design-Prinzipien (z.B. DRY - Don’t
Repeat Yourself), Modularitdt und Kommentierung werden
nicht erfasst [7]. Ein LLM kann eine Aufgabe zwar "l6sen",
der erzeugte Code kann aber so komplex und schlecht struk-
turiert sein, dass er fiir menschliche Entwickler kaum wart-
bar ist.

e Interaktive und kontextuelle Leistung: Die meisten
Benchmarks sind statisch und basieren auf einem einmali-
gen "Prompt-Antwort"-Schema. Sie bilden nicht den itera-
tiven Dialog ab, der fiir die Softwareentwicklung typisch ist
[7]. Ein Entwickler verfeinert seine Anfragen, bittet um Al-
ternativen und baut auf vorherigen Ergebnissen auf. Diese
kollaborative und kontextsensitive Interaktion wird von
aktuellen Benchmarks kaum erfasst.

o Ethische Implikationen und Bias: KI-Modelle werden
mit riesigen Mengen an Code aus 6ffentlichen Repositories
trainiert. Diese Daten konnen veraltete Praktiken, Vorurtei-
le oder ineffiziente Losungsansitze enthalten. Benchmarks
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messen nicht, ob ein Modell diese negativen Muster repro-
duziert oder ob der generierte Code ethischen und inklu-
siven Standards entspricht [9].

Zusammenfassend lasst sich festhalten, dass Benchmarks zwar
ein niitzliches Werkzeug zur Leistungsmessung sind, ihre Ergeb-
nisse jedoch kritisch hinterfragt werden miissen. Fiir eine ganzheit-
liche Bewertung der Eignung von LLMs in der Softwareentwicklung
missen qualitative Faktoren wie Sicherheit, Wartbarkeit und die
Qualitat der Mensch-KI-Kollaboration starker in den Fokus riicken.

3 Chancen durch KI in der
Softwareentwicklung

Die Integration von Kiinstlicher Intelligenz, insbesondere von gen-
erativen Modellen, eréffnet weitreichende Moglichkeiten, den kom-
pletten Softwareentwicklungsprozess effizienter, effektiver und
kreativer zu gestalten. Die Potenziale gehen dabei weit tiber die
reine Code-Automatisierung hinaus und betreffen grundlegende
Aspekte der Anforderungsanalyse, des Designs und der HCI [16].
KI agiert hierbei nicht nur als Werkzeug, sondern zunehmend als
Assistenz- und Kollaborationspartner [14, 18].

3.1 Automatisierung und Unterstiitzung im
Design- und Forschungsprozess

Eine der grofiten Chancen liegt in der Beschleunigung und qualita-
tiven Verbesserung der frithen Phasen der Softwareentwicklung,
die traditionell mit hohem manuellem Aufwand verbunden sind.

3.1.1  User Research und Analyse. Im Bereich der Nutzerforschung
ermoglicht KI eine tiefgreifendere und datengestiitzte Analyse des
Nutzerverhaltens. Anstatt sich ausschliellich auf subjektive Inter-
views zu verlassen, konnen Entwicklerteams objektive Analyse-
daten nutzen, um sogenannte "digitale Personas" zu erstellen [16].
Diese datengesteuerten Archetypen basieren auf echten Verhal-
tensmustern und erhohen die Validitit und Relevanz der Personas
erheblich [16]. Zudem kénnen Technologien wie Natural Language
Processing (NLP) genutzt werden, um grofle Mengen an qualita-
tivem Feedback, wie Interview-Transkripte oder Nutzerrezensionen,
schnell und systematisch auszuwerten und darin wiederkehrende
Muster oder Probleme (Pain Points) zu identifizieren [18].

3.1.2  Ul/UX Design und Prototyping. Im UI- und UX-Design fun-
giert KI als Katalysator fiir Kreativitit und Effizienz. Moderne Mod-
elle sind in der Lage, aus einfachen, handgezeichneten Skizzen
direkt funktionale UI-Wireframes oder sogar Code zu generieren
[16]. Dieser Ansatz verkiirzt den Weg von der Idee zum Prototyp
drastisch. Dariiber hinaus kénnen generative KI-Systeme genutzt
werden, um in kiirzester Zeit hunderte von Designvarianten fiir
A/B-Tests zu erstellen. Dies erméglicht es Teams, fundierte, daten-
basierte Entscheidungen iiber das Interface-Design zu treffen [16].
KI-Werkzeuge konnen zudem automatisiert iiberpriifen, ob Desig-
nentwiirfe etablierten Design-Richtlinien und Usability-Heuristiken
entsprechen [16].
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Table 1: Vergleich relevanter KI-Modelle anhand ausgewiahlter Benchmarks. Die Daten spiegeln den Stand vom 25. August 2025
wider und stammen von Artificial Analysis [3], SWE-bench [12] und weiteren Quellen [5, 13].

MMLU GPQA AIME 2025 SWE-bench LiveCodeBench Kontextfenster
Modell (Allgemeinwissen) (Expertenwissen) (Mathe/Logik) (SWE, Coding) (Coding) (in Tokens)
GPT-5 87,1% 85,4% 94,3% 65,0% 66,8% 400k
o3 85,3% 82,7% 88,3% 58,4% 78,4% 200k
Gemini 2.5 Pro 86,2% 84,4% 88,7% 53,6% 80,1% ~1M
Grok 4 86,6% 87,7% 92,7% 58,6% 81,9% 256k
DeepSeek R1 84,9% 81,3% 89,7% 57,6% 77,0% 128k
Claude 4 Opus Thinking 87,3% 79,6% 73,3% 67,6% 63,6% 200k

3.2 Generative KI als Co-kreativer Partner

Die vielleicht tiefgreifendste Verdnderung betrifft die Rolle der KIim
kreativen Prozess. Anstatt nur als Werkzeug zur Ausfithrung von Be-
fehlen zu dienen, entwickelt sich die KI zu einem co-kreativen Part-
ner. Dieser Paradigmenwechsel fithrt zu einer "Mensch-Computer-
Co-Kreativitit", bei der sowohl der Mensch als auch die KI kreative
Vorschlage in den Entwicklungsprozess einbringen [9]. In diesem
Modell iibernimmt die KI nicht mehr nur die Rolle eines Problem-
l6sers, sondern unterstiitzt auch bei der Problemfindung ("problem
finding"), indem sie neue, unerwartete Perspektiven und Ideen
generiert [9]. Fiir den Softwareentwickler bedeutet dies eine Ver-
lagerung des Fokus: Anstatt sich auf die Implementierung von
Details zu konzentrieren, kann er sich stirker auf ibergeordnete, ar-
chitektonische und kreative Entscheidungen fokussieren, wahrend
die KI bei der Ausarbeitung unterstiitzt.

3.3 Personalisierung und Intelligente User
Interfaces (IUT)

KI-Technologien sind der Schliissel zur Entwicklung von Intelligen-
ten User Interfaces (IUIs), die eine neue Stufe der Personalisierung
und kontextuellen Anpassung erméglichen. IUIs sind in der Lage,
sich an den einzelnen Nutzer, seinen aktuellen Kontext und seine
Absichten anzupassen [16]. Im Gegensatz zu statischen Interfaces,
die fiir einen "Durchschnittsnutzer" entworfen werden, konnen IUIs
ihr Verhalten und ihre Darstellung dynamisch dndern. Multimodale
KI-Modelle, die Text, Bild und Ton verarbeiten, eroffnen hierbei
vollig neue Moglichkeiten zur Individualisierung.

Ein konkretes Beispiel aus der Softwareentwicklung: Ein Pro-
grammierer arbeitet an einem spezifischen Problem in einer kom-
plexen Codebasis. Ein System mit IUI konnte dies erkennen und
automatisch relevante Abschnitte aus der internen Dokumenta-
tion, passende Code-Beispiele aus fritheren Projekten oder sogar
Warnungen vor potenziellen Seiteneffekten seiner aktuellen An-
derungen anzeigen [16]. Dies steigert nicht nur die Effizienz, son-
dern kann auch die Code-Qualitit und das Verstidndnis fiir das
Gesamtsystem nachhaltig verbessern.

4 Herausforderungen und Gefahren

Trotz der vielfiltigen Chancen birgt die Integration von KI in
die Softwareentwicklung auch erhebliche Herausforderungen und
Risiken, die ein tiefes Verstindnis und einen bewussten Umgang
erfordern. Die blofle Anwendung von KI als Werkzeug zur Effizien-
zsteigerung reicht nicht aus; es ist entscheidend, die inhérenten

Probleme der Technologie zu adressieren, um negative Konsequen-
zen zu vermeiden [17].

4.1 Das "Black-Box"-Problem und die
Notwendigkeit von Erklarbarkeit

Eine der fundamentalsten Herausforderungen aktueller KI-Modelle,
insbesondere von "Deep Learning"-Systemen, ist ihre Intransparenz
[16]. Oftmals ist es selbst fiir Experten nicht nachvollziehbar, wie
ein Modell zu einer bestimmten Ausgabe gelangt. Dieser Mangel
an Nachvollziehbarkeit wird als das "Black-Box"-Problem beze-
ichnet [17] (siehe Abbildung 2).

Qutput

Input D Black Box

Explainable
Al

Figure 2: Visualisierung des Black-Box-Problems in der KI,
bei dem die internen Prozesse intransparent sind. Explain-
able AI (XAI) versucht, diese Box aufzubrechen. (Bildquelle:
[15])

Fiir die Softwareentwicklung hat dies gravierende Folgen:

e Untergrabenes Vertrauen und komplizierte Fehler-
suche: Wenn ein KI-Assistent bestimmten Code oder spezi-
elle Designs vorschlagt, der Entwickler aber nicht verste-
hen kann, warum genau weshalb, dann untergrabt dies das
Vertrauen in das Werkzeug. Im Fehlerfall wird die Fehler-
suche (das Debugging) erheblich erschwert, da die zugrun-
deliegende Logik des generierten Artefakts unklar ist [17].

o Unmogliche Risikobewertung: Ohne Transparenz ist
eine fundierte Risikobewertung des von der KI generierten
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Codes oder Designs unméglich. Entwickler kénnen nicht
sicher beurteilen, ob alle Randfille bedacht oder potenzielle
Schwachstellen vermieden wurden.

Als Losungsansatz hat sich das Forschungsfeld der Explain-
able AI (XAI) etabliert. Ziel von XAl ist es, die Entscheidungen
von KI-Modellen transparent, interpretierbar und fiir den Men-
schen nachvollziehbar zu machen [17]. Anstatt nur ein Ergebnis zu
liefern, sollen XAI-Systeme auch eine verstidndliche Begriindung
fiir dieses Ergebnis bereitstellen. Dies ist eine entscheidende Voraus-
setzung, um das Prinzip der "Meaningful Human Control" umzuset-
zen und Entwicklern die Moglichkeit zu geben, die Vorschldge der
KI fundiert zu bewerten und die letztendliche Verantwortung zu
ibernehmen.

4.2 Sicherheitsrisiken in KI-generiertem Code

Neben der Intransparenz stellt die Sicherheit von KI-generiertem
Code eine der groften Gefahren dar. KI-Assistenten werden auf
riesigen Mengen an offentlich verfiigbarem Code trainiert, der
zwangslaufig auch unsichere Programmierpraktiken, veraltete Bib-
liotheksverwendungen und unentdeckte Schwachstellen enthélt
[10]. Die Modelle lernen diese Muster und konnen sie in ihren
Vorschlidgen reproduzieren.

Eine umfassende Nutzerstudie von Perry et al. (2023) unter-
suchte die Auswirkungen von KI-Assistenten auf die Sicherheit
des von Entwicklern geschriebenen Codes. Die Ergebnisse sind
alarmierend:

e Entwickler mit Zugang zu einem KI-Assistenten schrieben
signifikant haufiger Code mit kritischen Sicherheit-
sliicken als die Kontrollgruppe ohne KI-Unterstiitzung [10].
Dies zeigte sich iiber verschiedene Aufgaben hinweg, von
der Kryptografie bis hin zur Abwehr von SQL-Injection-
Angriffen.

e Teilnehmer, die die KI nutzten, waren zudem eher davon
iiberzeugt, sicheren Code geschrieben zu haben [10].
Dieses Phanomen der "KI-induzierten Selbstiiberschitzung"
ist besonders gefihrlich, da es die kritische Uberpriifung
der generierten Ergebnisse verringert und Entwickler in
einem falschen Gefiihl der Sicherheit wiegt.

Diese Ergebnisse verdeutlichen, dass die funktionale Korrektheit,
die von Benchmarks oft als einziges Kriterium gemessen wird, nicht
ausreicht. Die unkritische Ubernahme von KI-generiertem Code
stellt ein ernsthaftes Sicherheitsrisiko fiir Softwareprojekte dar.
Es unterstreicht die Notwendigkeit, dass Entwickler nicht nur die
Fahigkeit zur Bedienung von KI-Tools erlernen, sondern vor allem
ihre Kompetenz in der kritischen Verifikation und im sicheren
Programmieren schérfen miissen.

5 Auswirkungen auf die Softwareentwicklung

Der Einfluss von "Large Language Models" (LLMs) auf die Softwa-
reentwicklung ist tiefgreifend und transformativ. Er beschrankt sich
nicht auf die reine Codegenerierung, sondern erfasst den gesamten
Lebenszyklus einer Anwendung - von der ersten Idee bis zur finalen
Wartung. KI-Systeme entwickeln sich von reinen Werkzeugen zu
aktiven Partnern im Entwicklungsprozess, was zu einer Neudefini-
tion von Rollen und Arbeitsablaufen fithrt [17]. Diese Entwicklung
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wird im Folgenden anhand der zentralen Phasen des Softwareen-
twicklungsprozesses beleuchtet.

5.1 Anforderungsanalyse und
Systemarchitektur

In der initialen Phase der Anforderungsanalyse kénnen LLMs eine
wertvolle Rolle bei der Verarbeitung und Strukturierung von In-
formationen spielen. Sie sind in der Lage, grofle Mengen unstruk-
turierter Daten — wie Kundenfeedback, Anforderungsdokumente
oder Meeting-Transkripte — zu analysieren und daraus Kernaus-
sagen, User Stories oder funktionale Anforderungen zu extrahieren
[16]. Dies beschleunigt den Prozess der Anforderungserhebung
erheblich und hilft, Inkonsistenzen oder fehlende Informationen
frithzeitig zu erkennen.

Auch bei der Konzeption der Systemarchitektur konnen LLMs als
"Sparringspartner" dienen. Entwickler kénnen Architekturentwiirfe
in natiirlicher Sprache beschreiben und die KI bitten, diese auf Basis
etablierter Design-Patterns (z.B. Microservices, MVC) zu bewerten,
potenzielle Schwachstellen aufzuzeigen oder alternative Losungsan-
sitze vorzuschlagen. Modelle mit groflen Kontextfenstern sind hier
besonders im Vorteil, da sie komplexe Abhéngigkeiten innerhalb
eines Systems besser nachvollziehen kénnen.

5.2 UI/UX-Design und Prototyping

Im Bereich des User Interface (UI) und User Experience (UX) De-
signs entfaltet KI ihr volles Potenzial als kreativer und unterstiitzen-
der Partner. Der traditionell aufwendige Prozess von der Idee zum
Prototyp wird durch KI-gestiitzte Werkzeuge radikal beschleunigt
und verbessert [16].

5.2.1 Datengesteuerte User Personas. Die Erstellung von User Per-
sonas, die traditionell auf Interviews und Umfragen basiert, wird
durch KI datengesteuerter und objektiver. Anstatt manuell kleine
Stichproben auszuwerten, kénnen Algorithmen riesige Mengen an
Nutzungsdaten analysieren, um Verhaltensmuster zu erkennen und
daraus automatisch "digitale Personas" zu generieren [16]. Diese
Personas reprasentieren reale Nutzergruppen mit einer héheren
statistischen Validitdt und erméglichen eine prézisere, zielgruppen-
gerechte Gestaltung.

5.2.2  Automatisierung im Designprozess. Generative KI-Modelle
konnen den Designprozess auf vielfiltige Weise automatisieren und
inspirieren:

e Vom Sketch zum Code: Moderne KI-Systeme konnen
handgezeichnete Skizzen oder einfache Wireframes inter-
pretieren und direkt in funktionsfihigen Code fiir Web-
oder mobile Anwendungen umwandeln [16]. Dies verkiirzt
die Prototyping-Phase enorm.

e Generierung von Designvarianten: Fir A/B-Tests kon-
nen LLMs hunderte von Designalternativen fir ein UI-
Element oder eine ganze Seite erstellen [16]. So kénnen
Teams schnell und effizient testen, welche Variante bei den
Nutzern am besten ankommt.

e Einhaltung von Design-Richtlinien: KI kann Entwiirfe
automatisiert daraufthin iiberpriifen, ob sie etablierten, ge-
wiinschten Design-Systemen, Styleguides oder Barrierefrei-
heitsstandards entsprechen [16].
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Diese Automatisierung fiihrt zu einem Paradigmenwechsel: Die
Rolle des Designers verschiebt sich von der manuellen Erstellung
hin zur Kuratierung und strategischen Steuerung der von der KI
generierten Vorschlage [16].

5.3 Implementierung und Code-Generierung

Die offensichtlichste Auswirkung von LLMs liegt in der direkten
Unterstiitzung bei der Programmierung. KI-Assistenten kénnen
Boilerplate-Code generieren, komplexe Algorithmen implemen-
tieren, Code tibersetzen oder bestehenden Code refaktorisieren und
dokumentieren. Dies fiihrt zu einer signifikanten Steigerung der
Entwicklerproduktivitat.

Jedoch liegt die eigentliche Herausforderung nicht in der reinen
Generierung, sondern in der Sicherstellung der Qualitit und Sicher-
heit des erzeugten Codes, wie in Kapitel 4.2 diskutiert. Der "Human-
in-the-Loop"-Ansatz ist hier unerlésslich: Der Entwickler muss die
Vorschlage der KI kritisch priifen, anpassen und die letztendliche
Verantwortung fiir den Code tibernehmen [10, 17].

5.4 Testen und Qualititssicherung

Auch in der Phase des Testens bieten LLMs erhebliche Vorteile.
Sie kénnen auf Basis von Anforderungsdokumenten oder User
Stories automatisch Testfille generieren und so die Testabdeck-
ung erhohen [7]. Dies umfasst sowohl Unit-Tests zur Uberpriifung
einzelner Code-Komponenten als auch End-to-End-Tests, die kom-
plette Nutzerfliisse simulieren.

Im Bereich des UX-Testings konnen KI-Systeme ebenfalls unter-
stiitzen, indem sie grofle Mengen an Nutzerfeedback aus Usability-
Tests oder App-Store-Bewertungen analysieren und die hiufigsten
Usability-Probleme identifizieren. Pradiktive Modelle konnen sogar
auf Basis eines Ul-Designs vorhersagen, wo Nutzer potenzielle
Schwierigkeiten haben kénnten, und so bereits vor dem ersten Test
wertvolle Hinweise zur Optimierung liefern [16].

6 Diskussion und Fazit

Die vorliegende Arbeit hat die vielfaltigen Auswirkungen von
"Large Language Models" (LLMs) auf den Softwareentwicklungs-
prozess beleuchtet und gezeigt, dass deren Einfluss weit tiber die
reine Codegenerierung hinausgeht. Die Integration von KI-Techno-
logien in den gesamten Lebenszyklus der Softwareentwicklung
- von der Anforderungsanalyse bis zum Testen — markiert einen
Paradigmenwechsel, der sowohl enorme Chancen als auch sig-
nifikante Risiken birgt.

6.1 Synthese der Erkenntnisse

Die Analyse hat ergeben, dass die grofiten Potenziale von LLMs
in ihrer Fahigkeit liegen, als kollaborative Partner zu agieren. Sie
beschleunigen den Design- und Forschungsprozess durch die Er-
stellung datengesteuerter Personas, die Automatisierung von Pro-
totyping und die Analyse grof3er Datenmengen [16]. Im Idealfall
ermoglichen sie eine "Mensch-Computer-Co-Kreativitét", in der
sich Entwickler auf ibergeordnete, strategische Entscheidungen
konzentrieren konnen, wihrend die KI bei der Ausarbeitung unter-
stiitzt [9].

Simon Hortzsch

Diesen Chancen stehen jedoch gravierende Herausforderun-
gen gegeniiber. Das"Black-Box"-Problem untergrabt das Ver-
trauen und erschwert die Fehlersuche, wahrend die unkritische
Ubernahme von KI-generiertem Code, wie die Studie von Perry
et al. (2023) eindriicklich belegt, zu signifikanten Sicherheit-
sliicken fiihren kann [10]. Die aktuellen Benchmarks, obwohl sie
Fortschritte bei der Bewertung der Coding-Fihigkeiten machen,
vernachléssigen qualitative Aspekte wie Sicherheit, Wartbarkeit
und die Qualitit der Mensch-KI-Interaktion [7, 9, 10].

6.2 Diskussion: Die neue Rolle des
Softwareentwicklers

Die zentrale Frage, die sich aus diesen Erkenntnissen ergibt, lautet
nicht, ob KI den Softwareentwickler ersetzen kann, sondern wie sie
seine Rolle verdandert. Die Antwort auf die Frage "Kann KI die Auf-
gaben eines Softwareentwicklers vollstindig und fehlerfrei erledi-
gen?" lautet nach aktuellem Stand eindeutig Nein. KI-Systeme
konnen zwar Aufgaben effizienter und effektiver machen, doch
die ultimative Verantwortung und Kontrolle muss beim Menschen
bleiben [17].

Dies fiihrt zu einer fundamentalen Verschiebung der erforder-
lichen Fahigkeiten:

o Kritische Verifikation als oberstes Gebot: Die wichtig-
ste Fahigkeit ist nicht mehr nur das Schreiben von Code,
sondern dessen kritische Uberpriifung. Entwickler miissen
in der Lage sein, die Vorschlage einer KI auf Korrektheit,
Effizienz und vor allem Sicherheit zu validieren.

e Meisterung des Prompt Engineering: Die Qualitit des
KI-Outputs héngt entscheidend von der Qualitat des Inputs
ab. Die Fahigkeit, préazise und kontextbezogene Anweisun-
gen (Prompts) zu formulieren, wird zu einer Kernkompe-
tenz.

o Fokus auf iibergeordnete Fihigkeiten: Anstatt sich in
Implementierungsdetails zu verlieren, konnen und missen
sich Entwickler starker auf die Systemarchitektur, das User
Experience Design und die strategische Problemlésung
konzentrieren.

Die Etablierung eines konsequenten"Human-in-the-Loop"-
Ansatzes ist daher nicht nur eine Empfehlung, sondern eine Not-
wendigkeit, um die Potenziale der KI verantwortungsvoll zu nutzen
und die Risiken zu minimieren [17].

6.3 Fazit

"Large Language Models" sind keine magischen Werkzeuge, die
fehlerfreien und perfekten Code auf Knopfdruck liefern. Sie sind
vielmehr extrem leistungsfahige Assistenzsysteme, deren effektiver
Einsatz ein hohes Maf} an Fachwissen, kritischem Denken und
Verantwortungsbewusstsein erfordert.

Die Zukunft der Softwareentwicklung liegt nicht in der voll-
standigen Automatisierung durch KI, sondern in einer symbio-
tischen Zusammenarbeit zwischen Mensch und Maschine. Wenn
Entwickler lernen, die Stirken von LLMs gezielt zu nutzen und
gleichzeitig deren Schwichen durch menschliche Expertise und
Kontrolle auszugleichen, kann dies zu einer erheblichen Steigerung
von Effizienz, Effektivitat und letztendlich der Qualitét in der En-
twicklung komplexer Softwaresysteme fithren. Der richtige Einsatz
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von LLMs wird somit zu einer Schliisselkompetenz fiir die nachste
Generation von Softwareentwicklern.
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