
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

KI in der Mensch-Computer-Interaktion:
Auswirkungen von LLMs auf die Softwareentwicklung

Simon Hörtzsch
TU Bergakademie Freiberg

Freiberg, Germany
Simon.Hoertzsch@student.tu-freiberg.de

Abstract
In Zeiten von leistungsstarken "Large LanguageModels" (LLMs) wie
ChatGPT und Gemini wird deren Einfluss auf den gesamten Softwa-
reentwicklungsprozess untersucht. Diese Seminararbeit analysiert,
wie KI-Technologien nicht nur die reine Programmierung, son-
dern den kompletten Lebenszyklus der Softwareentwicklung –
von der Anforderungsanalyse über die Erstellung von User Per-
sonas und dem UI/UX-Design bis hin zum Testen – verändern [16].
Es wird der Frage nachgegangen, inwieweit LLMs als kollabora-
tive Partner agieren können [14, 18], um die Effizienz zu steigern
und kreative Prozesse zu unterstützen. Dabei werden sowohl die
enormen Potenziale zur Automatisierung und Unterstützung im
Design- und Forschungsprozess beleuchtet [16, 18] als auch kri-
tische Herausforderungen wie das "Black-Box"-Problem [17], die
Notwendigkeit von Erklärbarkeit und die signifikanten Sicherheit-
srisiken in KI-generiertem Code [10] diskutiert. Ziel ist es, eine dif-
ferenzierte Betrachtung der Chancen und Risiken zu ermöglichen
und die Notwendigkeit eines Human-in-the-Loop-Ansatzes zu un-
termauern [14, 17], um eine verantwortungsvolle und effektive
Integration von LLMs in die Softwareentwicklung zu gewährleis-
ten.

Keywords
Mensch-Computer-Interaktion, KI, LLM, Effizienz, Softwareentwick-
lung, UI/UX-Design, Black-Box-Problem

ACM Reference Format:
Simon Hörtzsch. 2025. KI in der Mensch-Computer-Interaktion: Auswirkun-
gen von LLMs auf die Softwareentwicklung. In Proceedings of Seminar on
Ubiquitous and Interactive Systems (UbiSys Seminar ’25). ACM, New York,
NY, USA, 7 pages.

1 Einleitung
Die rasante Entwicklung von "Large Language Models" (LLMs) hat
begonnen, traditionelle Arbeitsweisen in vielen Branchen grundle-
gend zu verändern. Insbesondere im Bereich der Softwareentwick-
lung entfalten diese Technologien ein transformatives Potenzial,
das weit über die reine Codegenerierung hinausgeht. Während
frühe Diskussionen sich oft auf die Fähigkeit von KI-Assistenten

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UbiSys Seminar ’25, TU Freiberg, DE
© 2025 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

zur Erstellung von Code-Snippets konzentrierten, wird heute deut-
lich, dass ihr Einfluss den gesamten Softwareentwicklungszyklus
umfasst: von der initialen Anforderungsanalyse und der Erstellung
von Systemarchitekturen über das Design von User Interfaces (UI)
und die Generierung von User Personas bis hin zu automatisierten
Testverfahren und der Wartung von Systemen [16].

Diese Entwicklungen werfen zentrale Fragen im Forschungs-
feld der Mensch-Computer-Interaktion (HCI) auf. Inwieweit kön-
nen LLMs als intelligente Werkzeuge oder sogar als kollaborative
Partner fungieren, um Entwicklerteams zu unterstützen und die
Effizienz zu steigern [14, 16]? Welchen Einfluss hat die Integration
von KI auf kreative Prozesse wie das UX-Design, und wie verän-
dert sich die Rolle des menschlichen Entwicklers in diesem neuen
Paradigma der "Mensch-Computer-Co-Kreativität" [9]?

Um die Leistungsfähigkeit von LLMs im Kontext der Softwa-
reentwicklung zu bewerten, werden spezialisierte Benchmarks
eingesetzt. Während allgemeine Wissenstests primär grundlegende
Fähigkeiten prüfen –wie etwa das breite Allgemeinwissen inMMLU
(Massive Multitask Language Understanding) [6, 19], das Experten-
wissen in GPQA (Graduate-Level Google-Proof Q&A) [11] oder das
logische Denkvermögen in AIME (American Invitational Mathe-
matics Examination) [2], treten für die Softwareentwicklung an-
wendungsorientierte Bewertungen in den Vordergrund. Spezial-
isierte Benchmarks wie LiveCodeBench [7] oder der SWE-bench
[1] testen die Fähigkeit von Modellen, reale Probleme aus GitHub-
Repositories zu lösen und bewerten somit direkt ihre Praxistauglich-
keit im Software Engineering (SWE). Solche praxisnahen Tests sind
entscheidend, um das wahre Potenzial und die Grenzen der ak-
tuellen KI-Modelle einschätzen zu können [7].

Diese Seminararbeit hat zum Ziel, die vielfältigen Auswirkun-
gen von LLMs auf den modernen Softwareentwicklungsprozess zu
analysieren. Dabei wird ein besonderer Fokus auf den Paradigmen-
wechsel von der reinen Programmierung hin zu einem ganzheitlich-
en, KI-gestützten Entwicklungszyklus gelegt. Zunächst werden die
grundlegenden Konzepte einer auf den Menschen zentrierten KI
(Human-Centered AI) vorgestellt. Darauf aufbauend werden die
Chancen durch KI in der HCI beleuchtet, insbesondere im Hin-
blick auf den Design- und Forschungsprozess. Anschließend erfolgt
eine kritische Auseinandersetzung mit den Herausforderungen und
Gefahren, wie dem "Black-Box"-Problem und Sicherheitsrisiken.
Die Auswirkungen auf spezifische Anwendungsfelder, insbeson-
dere das UI- und UX-Design, werden detailliert betrachtet, bevor die
Arbeit mit einer umfassenden Diskussion und einem Fazit schließt.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE Simon Hörtzsch

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 Grundlagen
2.1 Künstliche Intelligenz im Kontext von HCI
Die Integration von Künstlicher Intelligenz (KI) in interaktive Sys-
teme markiert einen fundamentalen Wandel in der HCI [17]. Tradi-
tionelle HCI-Paradigmen basierten oft auf einer "Reiz-Reaktions"-
Beziehung, bei der ein System deterministisch auf explizite Nutzer-
eingaben reagiert [17]. Moderne KI-Systeme hingegen funktion-
ieren zunehmend autonom, lernen aus großen Datenmengen und
können menschliches Verhalten antizipieren und darauf proaktiv
reagieren. Diese Entwicklung verändert nicht nur die Art, wie wir
mit Technologie interagieren, sondern auch den Prozess, wie diese
Technologie entworfen und entwickelt wird.

Im Zentrum dieser Transformation steht das Konzept der Human-
Centered AI (HCAI), das fordert, den Menschen in den Mittelpunkt
der Entwicklung von KI-Systemen zu stellen [17]. Anstatt KI als
reines Werkzeug zur Automatisierung zu betrachten, betont der
HCAI-Ansatz die Notwendigkeit, KI-Systeme so zu gestalten, dass
sie menschliche Fähigkeiten erweitern, anstatt sie zu ersetzen [17].
Dieser Ansatz zielt darauf ab, zuverlässige, sichere und vertrauens-
würdige KI-Systeme zu schaffen [17]. Um dies zu erreichen, sind
zwei zentrale Prinzipien von entscheidender Bedeutung: Human-
in-the-Loop und Meaningful Human Control.

Figure 1: Das Prinzip "Human-in-the-Loop", bei dem men-
schliche Expertise gezielt in automatisierte KI-Workflows
integriert wird. (Bildquelle: [4])

Human-in-the-Loop (Mensch im Kreislauf) beschreibt Systeme,
in denenMenschen aktiv in den Lebenszyklus des KI-Modells einge-
bunden sind [14, 17] (siehe Abbildung 1). Im Kontext der Softwa-
reentwicklung bedeutet dies, dass Entwickler nicht nur passive Kon-
sumenten von KI-generiertem Code oder Designvorschlägen sind.
Stattdessen sind sie aktive Teilnehmer, die das System trainieren,
dessen Ergebnisse überprüfen und durch kontinuierliches Feed-
back verfeinern. Dies kann beispielsweise durch die Korrektur von

KI-generiertem Code oder die Auswahl der besten aus mehreren
Designvarianten geschehen, wodurch das Modell iterativ verbessert
wird.

Meaningful Human Control (Sinnvolle menschliche Kontrolle)
geht noch einen Schritt weiter und fordert, dass Menschen zu jeder
Zeit die ultimative Autorität und Verantwortung über ein KI-System
behalten [17]. Damit diese Kontrolle "sinnvoll" ist, müssen drei
Bedingungen erfüllt sein [17]:

• Der Mensch muss die Handlungen des KI-Systems verste-
hen können. Dies adressiert das "Black-Box"-Problem vieler
moderner KI-Modelle, bei denen die Entscheidungsprozesse
intransparent sind [17].

• DerMenschmuss in der Lage sein, das System zu überwach-
en und dessen Verhalten nachzuvollziehen. Dies umfasst
sowohl die Überprüfung der Eingaben als auch der Aus-
gaben des Systems.

• Der Mensch muss das System übersteuern können, um
dessenHandlungen zu lenken oder zu korrigieren, insbeson-
dere in kritischen Situationen.

Für die Softwareentwicklung bedeutet dies, dass Entwickler die
Vorschläge einer KI nicht blind übernehmen dürfen. Sie müssen
die Fähigkeit und die Werkzeuge besitzen, die Funktionsweise, die
Grenzen und die potenziellen Schwachstellen des generierten Codes
oder Designs zu verstehen. Nur so können sie die Verantwortung
für die Qualität und Sicherheit des Endprodukts tragen.

Die Anwendung dieser Prinzipien ist entscheidend, um die Poten-
ziale der KI in der Softwareentwicklung voll auszuschöpfen und
gleichzeitig Risiken wie den Verlust von Kontrolle, die Einführung
von Sicherheitslücken oder die Erzeugung von qualitativ minderw-
ertigen Ergebnissen zu minimieren [17].

2.2 Aktuelle Benchmarks leistungsstarker LLMs
Um die Fähigkeiten von "Large Language Models" (LLMs) objek-
tiv zu bewerten und ihre Eignung für die vielfältigen Aufgaben
der Softwareentwicklung zu vergleichen, werden standardisierte
Tests, sogenannte Benchmarks, eingesetzt. Eine ganzheitliche Bew-
ertung erfordert dabei die Betrachtung verschiedener Fähigkeits-
dimensionen. Während allgemeine Benchmarks primär grundle-
gende Fähigkeiten prüfen – wie etwa das breite Allgemeinwissen
inMMLU [6], das Expertenwissen in GPQA [11] oder das logische
Denkvermögen inAIME [2], sind sie nur bedingt aussagekräftig für
die direkten, praxisnahen Anforderungen im Software Engineering
[7]. Eine hohe Punktzahl in diesen Tests ist kein Garant für die
Erzeugung von qualitativ hochwertigem und sicherem Code.

2.2.1 Spezialisierte Benchmarks für die Softwareentwicklung. Aus
diesem Grund wurden spezialisierte Benchmarks entwickelt, die
die Leistung von LLMs direkt im Kontext von Programmier- und
Software-Engineering-Aufgaben messen. Die beiden in der nach-
folgenden Tabelle verglichenen Ansätze sind:

• SWE-bench: Dieser Benchmark gilt als einer der realistis-
chsten Tests zur Messung der Fähigkeit von LLMs, kom-
plexe, reale Probleme aus bekannten GitHub-Repositories
wie ‘django‘ oder ‘matplotlib‘ zu lösen [8]. Anstatt isolierter

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

KI in der Mensch-Computer-Interaktion:
Auswirkungen von LLMs auf die Softwareentwicklung UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Programmieraufgaben muss hier der gesamte Problemlö-
sungsprozess innerhalb einer bestehenden Codebasis abge-
bildet werden.

• LiveCodeBench: Dieser Benchmark fokussiert sich auf die
interaktive Natur des Programmierens, wie sie in Program-
mierwettbewerben vorkommt. Er bewertet die Fähigkeit
eines Modells, in einer "Live-Coding"-Umgebung neue, zu-
vor ungesehene Probleme zu lösen, was ihn besonders ro-
bust gegenüber Datenkontamination macht [7].

2.2.2 Benchmark-Vergleich in der Praxis. Tabelle 1 zeigt einen direk-
ten Leistungsvergleich aktueller KI-Modelle über diese verschiede-
nen Fähigkeitsdimensionen hinweg. Die Ergebnisse verdeutlichen,
dass das Leistungsprofil der Modelle stark variiert. So kann einMod-
ell in der Logik (AIME) führend sein, aber bei der praktischen Fehler-
behebung in echten Repositories (SWE-bench) schwächer abschnei-
den. Besonders aufschlussreich ist der Vergleich zwischen SWE-
bench und LiveCodeBench, da er die unterschiedlichen Stärken der
Modelle bei der Arbeit mit bestehendemCode gegenüber neuen Pro-
grammieraufgaben aufzeigt. Ein weiterer wichtiger Faktor ist das
Kontextfenster, welches die Fähigkeit eines Modells beeinflusst,
komplexe Codebasen zu analysieren.

2.2.3 Kritische Betrachtung und Limitationen von Benchmarks. Ob-
wohl spezialisierte Benchmarks eine deutliche Verbesserung darstel-
len, weisen sie weiterhin signifikante Limitationen auf. Sie messen
oft nur die funktionale Korrektheit, lassen aber entscheidende qual-
itative Aspekte außer Acht, die in der professionellen Softwareen-
twicklung unerlässlich sind:

• Sicherheit von KI-Output: Die Sicherheit des generierten
Codes wird in der Regel nicht geprüft. Eine umfassende
Nutzerstudie von Perry et al. (2023) belegt dies eindrück-
lich: Entwickler, die Zugang zu einemKI-Assistenten hatten,
schrieben signifikant häufiger unsicheren Code als die Kon-
trollgruppe [10]. Zudem waren sie eher davon überzeugt,
sicheren Code verfasst zu haben, was auf eine gefährliche
Überschätzung der eigenen Leistung hindeutet [10].

• Wartbarkeit und Code-Qualität: Benchmarks bewerten
selten die Qualität des generierten Codes. Aspekte wie Les-
barkeit, Einhaltung vonDesign-Prinzipien (z.B. DRY - Don’t
Repeat Yourself), Modularität und Kommentierung werden
nicht erfasst [7]. Ein LLM kann eine Aufgabe zwar "lösen",
der erzeugte Code kann aber so komplex und schlecht struk-
turiert sein, dass er für menschliche Entwickler kaum wart-
bar ist.

• Interaktive und kontextuelle Leistung: Die meisten
Benchmarks sind statisch und basieren auf einem einmali-
gen "Prompt-Antwort"-Schema. Sie bilden nicht den itera-
tiven Dialog ab, der für die Softwareentwicklung typisch ist
[7]. Ein Entwickler verfeinert seine Anfragen, bittet um Al-
ternativen und baut auf vorherigen Ergebnissen auf. Diese
kollaborative und kontextsensitive Interaktion wird von
aktuellen Benchmarks kaum erfasst.

• Ethische Implikationen und Bias: KI-Modelle werden
mit riesigen Mengen an Code aus öffentlichen Repositories
trainiert. Diese Daten können veraltete Praktiken, Vorurtei-
le oder ineffiziente Lösungsansätze enthalten. Benchmarks

messen nicht, ob ein Modell diese negativen Muster repro-
duziert oder ob der generierte Code ethischen und inklu-
siven Standards entspricht [9].

Zusammenfassend lässt sich festhalten, dass Benchmarks zwar
ein nützliches Werkzeug zur Leistungsmessung sind, ihre Ergeb-
nisse jedoch kritisch hinterfragt werden müssen. Für eine ganzheit-
liche Bewertung der Eignung von LLMs in der Softwareentwicklung
müssen qualitative Faktoren wie Sicherheit, Wartbarkeit und die
Qualität der Mensch-KI-Kollaboration stärker in den Fokus rücken.

3 Chancen durch KI in der
Softwareentwicklung

Die Integration von Künstlicher Intelligenz, insbesondere von gen-
erativen Modellen, eröffnet weitreichende Möglichkeiten, den kom-
pletten Softwareentwicklungsprozess effizienter, effektiver und
kreativer zu gestalten. Die Potenziale gehen dabei weit über die
reine Code-Automatisierung hinaus und betreffen grundlegende
Aspekte der Anforderungsanalyse, des Designs und der HCI [16].
KI agiert hierbei nicht nur als Werkzeug, sondern zunehmend als
Assistenz- und Kollaborationspartner [14, 18].

3.1 Automatisierung und Unterstützung im
Design- und Forschungsprozess

Eine der größten Chancen liegt in der Beschleunigung und qualita-
tiven Verbesserung der frühen Phasen der Softwareentwicklung,
die traditionell mit hohem manuellem Aufwand verbunden sind.

3.1.1 User Research und Analyse. Im Bereich der Nutzerforschung
ermöglicht KI eine tiefgreifendere und datengestützte Analyse des
Nutzerverhaltens. Anstatt sich ausschließlich auf subjektive Inter-
views zu verlassen, können Entwicklerteams objektive Analyse-
daten nutzen, um sogenannte "digitale Personas" zu erstellen [16].
Diese datengesteuerten Archetypen basieren auf echten Verhal-
tensmustern und erhöhen die Validität und Relevanz der Personas
erheblich [16]. Zudem können Technologien wie Natural Language
Processing (NLP) genutzt werden, um große Mengen an qualita-
tivem Feedback, wie Interview-Transkripte oder Nutzerrezensionen,
schnell und systematisch auszuwerten und darin wiederkehrende
Muster oder Probleme (Pain Points) zu identifizieren [18].

3.1.2 UI/UX Design und Prototyping. Im UI- und UX-Design fun-
giert KI als Katalysator für Kreativität und Effizienz. Moderne Mod-
elle sind in der Lage, aus einfachen, handgezeichneten Skizzen
direkt funktionale UI-Wireframes oder sogar Code zu generieren
[16]. Dieser Ansatz verkürzt den Weg von der Idee zum Prototyp
drastisch. Darüber hinaus können generative KI-Systeme genutzt
werden, um in kürzester Zeit hunderte von Designvarianten für
A/B-Tests zu erstellen. Dies ermöglicht es Teams, fundierte, daten-
basierte Entscheidungen über das Interface-Design zu treffen [16].
KI-Werkzeuge können zudem automatisiert überprüfen, ob Desig-
nentwürfe etabliertenDesign-Richtlinien undUsability-Heuristiken
entsprechen [16].

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE Simon Hörtzsch

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Vergleich relevanter KI-Modelle anhand ausgewählter Benchmarks. Die Daten spiegeln den Stand vom 25. August 2025
wider und stammen von Artificial Analysis [3], SWE-bench [12] und weiteren Quellen [5, 13].

Modell
MMLU

(Allgemeinwissen)
GPQA

(Expertenwissen)
AIME 2025

(Mathe/Logik)
SWE-bench

(SWE, Coding)
LiveCodeBench

(Coding)
Kontextfenster
(in Tokens)

GPT-5 87,1% 85,4% 94,3% 65,0% 66,8% 400k
o3 85,3% 82,7% 88,3% 58,4% 78,4% 200k
Gemini 2.5 Pro 86,2% 84,4% 88,7% 53,6% 80,1% ~1M
Grok 4 86,6% 87,7% 92,7% 58,6% 81,9% 256k
DeepSeek R1 84,9% 81,3% 89,7% 57,6% 77,0% 128k
Claude 4 Opus Thinking 87,3% 79,6% 73,3% 67,6% 63,6% 200k

3.2 Generative KI als Co-kreativer Partner
Die vielleicht tiefgreifendste Veränderung betrifft die Rolle der KI im
kreativen Prozess. Anstatt nur alsWerkzeug zur Ausführung von Be-
fehlen zu dienen, entwickelt sich die KI zu einem co-kreativen Part-
ner. Dieser Paradigmenwechsel führt zu einer "Mensch-Computer-
Co-Kreativität", bei der sowohl der Mensch als auch die KI kreative
Vorschläge in den Entwicklungsprozess einbringen [9]. In diesem
Modell übernimmt die KI nicht mehr nur die Rolle eines Problem-
lösers, sondern unterstützt auch bei der Problemfindung ("problem
finding"), indem sie neue, unerwartete Perspektiven und Ideen
generiert [9]. Für den Softwareentwickler bedeutet dies eine Ver-
lagerung des Fokus: Anstatt sich auf die Implementierung von
Details zu konzentrieren, kann er sich stärker auf übergeordnete, ar-
chitektonische und kreative Entscheidungen fokussieren, während
die KI bei der Ausarbeitung unterstützt.

3.3 Personalisierung und Intelligente User
Interfaces (IUI)

KI-Technologien sind der Schlüssel zur Entwicklung von Intelligen-
ten User Interfaces (IUIs), die eine neue Stufe der Personalisierung
und kontextuellen Anpassung ermöglichen. IUIs sind in der Lage,
sich an den einzelnen Nutzer, seinen aktuellen Kontext und seine
Absichten anzupassen [16]. Im Gegensatz zu statischen Interfaces,
die für einen "Durchschnittsnutzer" entworfen werden, können IUIs
ihr Verhalten und ihre Darstellung dynamisch ändern. Multimodale
KI-Modelle, die Text, Bild und Ton verarbeiten, eröffnen hierbei
völlig neue Möglichkeiten zur Individualisierung.

Ein konkretes Beispiel aus der Softwareentwicklung: Ein Pro-
grammierer arbeitet an einem spezifischen Problem in einer kom-
plexen Codebasis. Ein System mit IUI könnte dies erkennen und
automatisch relevante Abschnitte aus der internen Dokumenta-
tion, passende Code-Beispiele aus früheren Projekten oder sogar
Warnungen vor potenziellen Seiteneffekten seiner aktuellen Än-
derungen anzeigen [16]. Dies steigert nicht nur die Effizienz, son-
dern kann auch die Code-Qualität und das Verständnis für das
Gesamtsystem nachhaltig verbessern.

4 Herausforderungen und Gefahren
Trotz der vielfältigen Chancen birgt die Integration von KI in
die Softwareentwicklung auch erhebliche Herausforderungen und
Risiken, die ein tiefes Verständnis und einen bewussten Umgang
erfordern. Die bloße Anwendung von KI als Werkzeug zur Effizien-
zsteigerung reicht nicht aus; es ist entscheidend, die inhärenten

Probleme der Technologie zu adressieren, um negative Konsequen-
zen zu vermeiden [17].

4.1 Das "Black-Box"-Problem und die
Notwendigkeit von Erklärbarkeit

Eine der fundamentalsten Herausforderungen aktueller KI-Modelle,
insbesondere von "Deep Learning"-Systemen, ist ihre Intransparenz
[16]. Oftmals ist es selbst für Experten nicht nachvollziehbar, wie
ein Modell zu einer bestimmten Ausgabe gelangt. Dieser Mangel
an Nachvollziehbarkeit wird als das "Black-Box"-Problem beze-
ichnet [17] (siehe Abbildung 2).

Figure 2: Visualisierung des Black-Box-Problems in der KI,
bei dem die internen Prozesse intransparent sind. Explain-
able AI (XAI) versucht, diese Box aufzubrechen. (Bildquelle:
[15])

Für die Softwareentwicklung hat dies gravierende Folgen:
• Untergrabenes Vertrauen und komplizierte Fehler-

suche:Wenn ein KI-Assistent bestimmten Code oder spezi-
elle Designs vorschlägt, der Entwickler aber nicht verste-
hen kann, warum genau weshalb, dann untergräbt dies das
Vertrauen in das Werkzeug. Im Fehlerfall wird die Fehler-
suche (das Debugging) erheblich erschwert, da die zugrun-
deliegende Logik des generierten Artefakts unklar ist [17].

• Unmögliche Risikobewertung: Ohne Transparenz ist
eine fundierte Risikobewertung des von der KI generierten

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

KI in der Mensch-Computer-Interaktion:
Auswirkungen von LLMs auf die Softwareentwicklung UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Codes oder Designs unmöglich. Entwickler können nicht
sicher beurteilen, ob alle Randfälle bedacht oder potenzielle
Schwachstellen vermieden wurden.

Als Lösungsansatz hat sich das Forschungsfeld der Explain-
able AI (XAI) etabliert. Ziel von XAI ist es, die Entscheidungen
von KI-Modellen transparent, interpretierbar und für den Men-
schen nachvollziehbar zu machen [17]. Anstatt nur ein Ergebnis zu
liefern, sollen XAI-Systeme auch eine verständliche Begründung
für dieses Ergebnis bereitstellen. Dies ist eine entscheidende Voraus-
setzung, um das Prinzip der "Meaningful Human Control" umzuset-
zen und Entwicklern die Möglichkeit zu geben, die Vorschläge der
KI fundiert zu bewerten und die letztendliche Verantwortung zu
übernehmen.

4.2 Sicherheitsrisiken in KI-generiertem Code
Neben der Intransparenz stellt die Sicherheit von KI-generiertem
Code eine der größten Gefahren dar. KI-Assistenten werden auf
riesigen Mengen an öffentlich verfügbarem Code trainiert, der
zwangsläufig auch unsichere Programmierpraktiken, veraltete Bib-
liotheksverwendungen und unentdeckte Schwachstellen enthält
[10]. Die Modelle lernen diese Muster und können sie in ihren
Vorschlägen reproduzieren.

Eine umfassende Nutzerstudie von Perry et al. (2023) unter-
suchte die Auswirkungen von KI-Assistenten auf die Sicherheit
des von Entwicklern geschriebenen Codes. Die Ergebnisse sind
alarmierend:

• Entwickler mit Zugang zu einem KI-Assistenten schrieben
signifikant häufiger Code mit kritischen Sicherheit-
slücken als die Kontrollgruppe ohne KI-Unterstützung [10].
Dies zeigte sich über verschiedene Aufgaben hinweg, von
der Kryptografie bis hin zur Abwehr von SQL-Injection-
Angriffen.

• Teilnehmer, die die KI nutzten, waren zudem eher davon
überzeugt, sicheren Code geschrieben zu haben [10].
Dieses Phänomen der "KI-induzierten Selbstüberschätzung"
ist besonders gefährlich, da es die kritische Überprüfung
der generierten Ergebnisse verringert und Entwickler in
einem falschen Gefühl der Sicherheit wiegt.

Diese Ergebnisse verdeutlichen, dass die funktionale Korrektheit,
die von Benchmarks oft als einziges Kriterium gemessen wird, nicht
ausreicht. Die unkritische Übernahme von KI-generiertem Code
stellt ein ernsthaftes Sicherheitsrisiko für Softwareprojekte dar.
Es unterstreicht die Notwendigkeit, dass Entwickler nicht nur die
Fähigkeit zur Bedienung von KI-Tools erlernen, sondern vor allem
ihre Kompetenz in der kritischen Verifikation und im sicheren
Programmieren schärfen müssen.

5 Auswirkungen auf die Softwareentwicklung
Der Einfluss von "Large Language Models" (LLMs) auf die Softwa-
reentwicklung ist tiefgreifend und transformativ. Er beschränkt sich
nicht auf die reine Codegenerierung, sondern erfasst den gesamten
Lebenszyklus einer Anwendung – von der ersten Idee bis zur finalen
Wartung. KI-Systeme entwickeln sich von reinen Werkzeugen zu
aktiven Partnern im Entwicklungsprozess, was zu einer Neudefini-
tion von Rollen und Arbeitsabläufen führt [17]. Diese Entwicklung

wird im Folgenden anhand der zentralen Phasen des Softwareen-
twicklungsprozesses beleuchtet.

5.1 Anforderungsanalyse und
Systemarchitektur

In der initialen Phase der Anforderungsanalyse können LLMs eine
wertvolle Rolle bei der Verarbeitung und Strukturierung von In-
formationen spielen. Sie sind in der Lage, große Mengen unstruk-
turierter Daten – wie Kundenfeedback, Anforderungsdokumente
oder Meeting-Transkripte – zu analysieren und daraus Kernaus-
sagen, User Stories oder funktionale Anforderungen zu extrahieren
[16]. Dies beschleunigt den Prozess der Anforderungserhebung
erheblich und hilft, Inkonsistenzen oder fehlende Informationen
frühzeitig zu erkennen.

Auch bei der Konzeption der Systemarchitektur können LLMs als
"Sparringspartner" dienen. Entwickler könnenArchitekturentwürfe
in natürlicher Sprache beschreiben und die KI bitten, diese auf Basis
etablierter Design-Patterns (z.B. Microservices, MVC) zu bewerten,
potenzielle Schwachstellen aufzuzeigen oder alternative Lösungsan-
sätze vorzuschlagen. Modelle mit großen Kontextfenstern sind hier
besonders im Vorteil, da sie komplexe Abhängigkeiten innerhalb
eines Systems besser nachvollziehen können.

5.2 UI/UX-Design und Prototyping
Im Bereich des User Interface (UI) und User Experience (UX) De-
signs entfaltet KI ihr volles Potenzial als kreativer und unterstützen-
der Partner. Der traditionell aufwendige Prozess von der Idee zum
Prototyp wird durch KI-gestützte Werkzeuge radikal beschleunigt
und verbessert [16].

5.2.1 Datengesteuerte User Personas. Die Erstellung von User Per-
sonas, die traditionell auf Interviews und Umfragen basiert, wird
durch KI datengesteuerter und objektiver. Anstatt manuell kleine
Stichproben auszuwerten, können Algorithmen riesige Mengen an
Nutzungsdaten analysieren, um Verhaltensmuster zu erkennen und
daraus automatisch "digitale Personas" zu generieren [16]. Diese
Personas repräsentieren reale Nutzergruppen mit einer höheren
statistischen Validität und ermöglichen eine präzisere, zielgruppen-
gerechte Gestaltung.

5.2.2 Automatisierung im Designprozess. Generative KI-Modelle
können den Designprozess auf vielfältigeWeise automatisieren und
inspirieren:

• Vom Sketch zum Code: Moderne KI-Systeme können
handgezeichnete Skizzen oder einfache Wireframes inter-
pretieren und direkt in funktionsfähigen Code für Web-
oder mobile Anwendungen umwandeln [16]. Dies verkürzt
die Prototyping-Phase enorm.

• Generierung von Designvarianten: Für A/B-Tests kön-
nen LLMs hunderte von Designalternativen für ein UI-
Element oder eine ganze Seite erstellen [16]. So können
Teams schnell und effizient testen, welche Variante bei den
Nutzern am besten ankommt.

• Einhaltung von Design-Richtlinien: KI kann Entwürfe
automatisiert daraufhin überprüfen, ob sie etablierten, ge-
wünschten Design-Systemen, Styleguides oder Barrierefrei-
heitsstandards entsprechen [16].

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE Simon Hörtzsch

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Diese Automatisierung führt zu einem Paradigmenwechsel: Die
Rolle des Designers verschiebt sich von der manuellen Erstellung
hin zur Kuratierung und strategischen Steuerung der von der KI
generierten Vorschläge [16].

5.3 Implementierung und Code-Generierung
Die offensichtlichste Auswirkung von LLMs liegt in der direkten
Unterstützung bei der Programmierung. KI-Assistenten können
Boilerplate-Code generieren, komplexe Algorithmen implemen-
tieren, Code übersetzen oder bestehenden Code refaktorisieren und
dokumentieren. Dies führt zu einer signifikanten Steigerung der
Entwicklerproduktivität.

Jedoch liegt die eigentliche Herausforderung nicht in der reinen
Generierung, sondern in der Sicherstellung der Qualität und Sicher-
heit des erzeugten Codes, wie in Kapitel 4.2 diskutiert. Der "Human-
in-the-Loop"-Ansatz ist hier unerlässlich: Der Entwickler muss die
Vorschläge der KI kritisch prüfen, anpassen und die letztendliche
Verantwortung für den Code übernehmen [10, 17].

5.4 Testen und Qualitätssicherung
Auch in der Phase des Testens bieten LLMs erhebliche Vorteile.
Sie können auf Basis von Anforderungsdokumenten oder User
Stories automatisch Testfälle generieren und so die Testabdeck-
ung erhöhen [7]. Dies umfasst sowohl Unit-Tests zur Überprüfung
einzelner Code-Komponenten als auch End-to-End-Tests, die kom-
plette Nutzerflüsse simulieren.

Im Bereich des UX-Testings können KI-Systeme ebenfalls unter-
stützen, indem sie große Mengen an Nutzerfeedback aus Usability-
Tests oder App-Store-Bewertungen analysieren und die häufigsten
Usability-Probleme identifizieren. Prädiktive Modelle können sogar
auf Basis eines UI-Designs vorhersagen, wo Nutzer potenzielle
Schwierigkeiten haben könnten, und so bereits vor dem ersten Test
wertvolle Hinweise zur Optimierung liefern [16].

6 Diskussion und Fazit
Die vorliegende Arbeit hat die vielfältigen Auswirkungen von
"Large Language Models" (LLMs) auf den Softwareentwicklungs-
prozess beleuchtet und gezeigt, dass deren Einfluss weit über die
reine Codegenerierung hinausgeht. Die Integration von KI-Techno-
logien in den gesamten Lebenszyklus der Softwareentwicklung
– von der Anforderungsanalyse bis zum Testen – markiert einen
Paradigmenwechsel, der sowohl enorme Chancen als auch sig-
nifikante Risiken birgt.

6.1 Synthese der Erkenntnisse
Die Analyse hat ergeben, dass die größten Potenziale von LLMs
in ihrer Fähigkeit liegen, als kollaborative Partner zu agieren. Sie
beschleunigen den Design- und Forschungsprozess durch die Er-
stellung datengesteuerter Personas, die Automatisierung von Pro-
totyping und die Analyse großer Datenmengen [16]. Im Idealfall
ermöglichen sie eine "Mensch-Computer-Co-Kreativität", in der
sich Entwickler auf übergeordnete, strategische Entscheidungen
konzentrieren können, während die KI bei der Ausarbeitung unter-
stützt [9].

Diesen Chancen stehen jedoch gravierende Herausforderun-
gen gegenüber. Das"Black-Box"-Problem untergräbt das Ver-
trauen und erschwert die Fehlersuche, während die unkritische
Übernahme von KI-generiertem Code, wie die Studie von Perry
et al. (2023) eindrücklich belegt, zu signifikanten Sicherheit-
slücken führen kann [10]. Die aktuellen Benchmarks, obwohl sie
Fortschritte bei der Bewertung der Coding-Fähigkeiten machen,
vernachlässigen qualitative Aspekte wie Sicherheit, Wartbarkeit
und die Qualität der Mensch-KI-Interaktion [7, 9, 10].

6.2 Diskussion: Die neue Rolle des
Softwareentwicklers

Die zentrale Frage, die sich aus diesen Erkenntnissen ergibt, lautet
nicht, ob KI den Softwareentwickler ersetzen kann, sondern wie sie
seine Rolle verändert. Die Antwort auf die Frage "Kann KI die Auf-
gaben eines Softwareentwicklers vollständig und fehlerfrei erledi-
gen?" lautet nach aktuellem Stand eindeutig Nein. KI-Systeme
können zwar Aufgaben effizienter und effektiver machen, doch
die ultimative Verantwortung und Kontrolle muss beim Menschen
bleiben [17].

Dies führt zu einer fundamentalen Verschiebung der erforder-
lichen Fähigkeiten:

• Kritische Verifikation als oberstes Gebot: Die wichtig-
ste Fähigkeit ist nicht mehr nur das Schreiben von Code,
sondern dessen kritische Überprüfung. Entwickler müssen
in der Lage sein, die Vorschläge einer KI auf Korrektheit,
Effizienz und vor allem Sicherheit zu validieren.

• Meisterung des Prompt Engineering: Die Qualität des
KI-Outputs hängt entscheidend von der Qualität des Inputs
ab. Die Fähigkeit, präzise und kontextbezogene Anweisun-
gen (Prompts) zu formulieren, wird zu einer Kernkompe-
tenz.

• Fokus auf übergeordnete Fähigkeiten: Anstatt sich in
Implementierungsdetails zu verlieren, können und müssen
sich Entwickler stärker auf die Systemarchitektur, das User
Experience Design und die strategische Problemlösung
konzentrieren.

Die Etablierung eines konsequenten"Human-in-the-Loop"-
Ansatzes ist daher nicht nur eine Empfehlung, sondern eine Not-
wendigkeit, um die Potenziale der KI verantwortungsvoll zu nutzen
und die Risiken zu minimieren [17].

6.3 Fazit
"Large Language Models" sind keine magischen Werkzeuge, die
fehlerfreien und perfekten Code auf Knopfdruck liefern. Sie sind
vielmehr extrem leistungsfähige Assistenzsysteme, deren effektiver
Einsatz ein hohes Maß an Fachwissen, kritischem Denken und
Verantwortungsbewusstsein erfordert.

Die Zukunft der Softwareentwicklung liegt nicht in der voll-
ständigen Automatisierung durch KI, sondern in einer symbio-
tischen Zusammenarbeit zwischen Mensch und Maschine. Wenn
Entwickler lernen, die Stärken von LLMs gezielt zu nutzen und
gleichzeitig deren Schwächen durch menschliche Expertise und
Kontrolle auszugleichen, kann dies zu einer erheblichen Steigerung
von Effizienz, Effektivität und letztendlich der Qualität in der En-
twicklung komplexer Softwaresysteme führen. Der richtige Einsatz

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

KI in der Mensch-Computer-Interaktion:
Auswirkungen von LLMs auf die Softwareentwicklung UbiSys Seminar ’25, Summer term 2025, TU Freiberg, DE

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

von LLMs wird somit zu einer Schlüsselkompetenz für die nächste
Generation von Softwareentwicklern.

Acknowledgments
Mein Dank gilt Prof. Dr. Bastian Pfleging für die Betreuung dieser
Arbeit.

References
[1] Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias

Uddin, and Song Wang. 2024. SWE-Bench+: Enhanced Coding Benchmark for
LLMs. arXiv preprint arXiv:2410.06992 (2024).

[2] Analytics Vidhya. 2025. Top LLM Benchmarks to Evaluate the Performance
of Large Language Models. Abgerufen am 28. August 2025 von https://www.
analyticsvidhya.com/blog/2025/03/llm-benchmarks/.

[3] Artificial Analysis. 2025. AI Model & API Provider Comparisons. Abgerufen am
25. August 2025 von https://artificialanalysis.ai/.

[4] Cloudflare. 2025. Human in the Loop · Cloudflare Agents docs. https://developers.
cloudflare.com/agents/concepts/human-in-the-loop/

[5] Barnacle Goose. 2024. DeepSeek’s new R1-0528 Performance Analy-
sis and Benchmark Comparisons. Abgerufen am 28. August 2025 von
https://medium.com/@leucopsis/deepseeks-new-r1-0528-performance-
analysis-and-benchmark-comparisons-6440eac858d6.

[6] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Un-
derstanding. In International Conference on Learning Representations (ICLR).

[7] Naman Jain, King Han, Alex Gu, Fanjia Yan, Wen-Ding Li, Tianjun Zhang,
Sida I. Wang, Koushik Sen, Ion Stoica, and Armando Solar-Lezama. 2024. Live-
CodeBench: Holistic and Contamination Free Evaluation of Large Language
Models for Code. arXiv preprint arXiv:2403.07974 (2024).

[8] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2023. Swe-bench: Can language models resolve
real-world github issues? arXiv preprint arXiv:2310.06770 (2023).

[9] Michael Muller, Lydia B. Chilton, Anna Kantosalo, Mary Lou Maher,
Charles Patrick Martin, and Greg Walsh. 2022. GenAICHI: Generative AI

and HCI. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts (CHI ’22 Extended Abstracts). ACM, New Orleans, LA, USA, 1–7.
doi:10.1145/3491101.3503719

[10] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do Users
Write More Insecure Code with AI Assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’23). ACM,
Copenhagen, Denmark, 2785–2799. doi:10.1145/3576915.3623157

[11] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe
Pang, Julian Michael, Julien Dirani, and Samuel R. Bowman. 2023. GPQA: A
Graduate-Level Google-Proof Q&A Benchmark. arXiv preprint arXiv:2311.12022
(2023).

[12] SWE-bench Team. 2025. SWE-bench Leaderboard. Abgerufen am 28. August
2025 von https://www.swebench.com/.

[13] Vals.ai. 2025. SWE-bench Benchmark. Abgerufen am 28. August 2025 von
https://www.vals.ai/benchmarks/swebench-2025-08-27.

[14] Varad Vishwarupe, Shrey Maheshwari, Aseem Deshmukh, Shweta Mhaisalkar,
Prachi M. Joshi, and Nicole Mathias. 2022. Bringing Humans at the Epicenter of
Artificial Intelligence: A Confluence of AI, HCI and Human Centered Computing,
In International Conference on Industry Sciences and Computer Science Innova-
tion. Procedia Computer Science 204, 914–921. doi:10.1016/j.procs.2022.08.111

[15] Worldline. 2021. Ever heard of the AI black box problem? https:
//worldline.com/en/home/main-navigation/resources/blogs/2021/ever-
heard-of-the-ai-black-box-problem.html

[16] Wei Xu. 2023. AI in HCI Design and User Experience. In Human Computer
Interaction: Interacting in Intelligent Environments, Constantine Stephanidis and
Gavriel Salvendy (Eds.). CRC Press, Boca Raton, FL, Chapter 5, 1–30. Preprint
available as arXiv:2301.00987.

[17] Wei Xu, Marvin J. Dainoff, Liezhong Ge, and Zaifeng Gao. 2023. Transitioning to
Human Interaction with AI Systems: New Challenges and Opportunities for HCI
Professionals to Enable Human-Centered AI. International Journal of Human-
Computer Interaction 39, 3 (2023), 494–518. doi:10.1080/10447318.2022.2041900

[18] Yueting Zhang, Arzoo Atiq, and Winn Chow. 2024. Exploring the Role of AI
in UX Research: Challenges, Opportunities, and Educational Implications. In
Proceedings ASCILITE 2024, T. Cochrane, V. Narayan, E. Bone, C. Deneen, M. Sali-
gari, K. Tregloan, and R. Vanderburg (Eds.). ASCILITE, Melbourne, Australia,
556–560. doi:10.14742/apubs.2024.1341

[19] Zilliz. 2024. What is MMLU Benchmark? Abgerufen am 28. August 2025 von
https://zilliz.com/glossary/mmlu-benchmark.

7

https://www.analyticsvidhya.com/blog/2025/03/llm-benchmarks/
https://www.analyticsvidhya.com/blog/2025/03/llm-benchmarks/
https://artificialanalysis.ai/
https://developers.cloudflare.com/agents/concepts/human-in-the-loop/
https://developers.cloudflare.com/agents/concepts/human-in-the-loop/
https://medium.com/@leucopsis/deepseeks-new-r1-0528-performance-analysis-and-benchmark-comparisons-6440eac858d6
https://medium.com/@leucopsis/deepseeks-new-r1-0528-performance-analysis-and-benchmark-comparisons-6440eac858d6
https://doi.org/10.1145/3491101.3503719
https://doi.org/10.1145/3576915.3623157
https://www.swebench.com/
https://www.vals.ai/benchmarks/swebench-2025-08-27
https://doi.org/10.1016/j.procs.2022.08.111
https://worldline.com/en/home/main-navigation/resources/blogs/2021/ever-heard-of-the-ai-black-box-problem.html
https://worldline.com/en/home/main-navigation/resources/blogs/2021/ever-heard-of-the-ai-black-box-problem.html
https://worldline.com/en/home/main-navigation/resources/blogs/2021/ever-heard-of-the-ai-black-box-problem.html
https://doi.org/10.1080/10447318.2022.2041900
https://doi.org/10.14742/apubs.2024.1341
https://zilliz.com/glossary/mmlu-benchmark

	Abstract
	1 Einleitung
	2 Grundlagen
	2.1 Künstliche Intelligenz im Kontext von HCI
	2.2 Aktuelle Benchmarks leistungsstarker LLMs

	3 Chancen durch KI in der Softwareentwicklung
	3.1 Automatisierung und Unterstützung im Design- und Forschungsprozess
	3.2 Generative KI als Co-kreativer Partner
	3.3 Personalisierung und Intelligente User Interfaces (IUI)

	4 Herausforderungen und Gefahren
	4.1 Das "Black-Box"-Problem und die Notwendigkeit von Erklärbarkeit
	4.2 Sicherheitsrisiken in KI-generiertem Code

	5 Auswirkungen auf die Softwareentwicklung
	5.1 Anforderungsanalyse und Systemarchitektur
	5.2 UI/UX-Design und Prototyping
	5.3 Implementierung und Code-Generierung
	5.4 Testen und Qualitätssicherung

	6 Diskussion und Fazit
	6.1 Synthese der Erkenntnisse
	6.2 Diskussion: Die neue Rolle des Softwareentwicklers
	6.3 Fazit

	Acknowledgments
	References

